

Lecture Notes in Artificial Intelligence 5323
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Sertan Girgin Manuel Loth
Rémi Munos Philippe Preux
Daniil Ryabko (Eds.)

Recent Advances in
Reinforcement Learning

8th European Workshop, EWRL 2008
Villeneuve d’Ascq, France, June 30-July 3, 2008
Revised and Selected Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Sertan Girgin
INRIA Lille-Nord Europe, 59650 Villeneuve d’Ascq, France
E-mail: sertan@ceng.metu.edu.tr

Manuel Loth
Rémi Munos
Philippe Preux
Daniil Ryabko
INRIA, LIFL, CNRS, Université de Lille
Villeneuve d’Ascq, France
E-mail: {manuel.loth,remi.munos,philippe.preux,daniil.ryabko}@inria.fr

Library of Congress Control Number: 2008940489

CR Subject Classification (1998): I.2.6, I.2, F.1, G.3, C.1.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-89721-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89721-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12573929 06/3180 5 4 3 2 1 0

Foreword

In the summer of 2008, reinforcement learning researchers from around the world
gathered in the north of France for a week of talks and discussions on reinforce-
ment learning, on how it could be made more efficient, applied to a broader
range of applications, and utilized at more abstract and symbolic levels. As a
participant in this 8th European Workshop on Reinforcement Learning, I was
struck by both the quality and quantity of the presentations. There were four
full days of short talks, over 50 in all, far more than there have been at any pre-
vious meeting on reinforcement learning in Europe, or indeed, anywhere else in
the world. There was an air of excitement as substantial progress was reported
in many areas including Computer Go, robotics, and fitted methods. Overall,
the work reported seemed to me to be an excellent, broad, and representative
sample of cutting-edge reinforcement learning research. Some of the best of it is
collected and published in this volume.

The workshop and the papers collected here provide evidence that the field of
reinforcement learning remains vigorous and varied. It is appropriate to reflect
on some of the reasons for this. One is that the field remains focused on a prob-
lem — sequential decision making — without prejudice as to solution methods.
Another is the existence of a common terminology and body of theory. Rein-
forcement learning overlaps with many fields (optimal control, artificial intelli-
gence, neuroscience, psychology, economics) that use different terminology for
similar concepts; reinforcement learning is part of the long process of creating a
theoretical framework common to all these fields. Another strength of reinforce-
ment learning is that its research community continues to embrace diversity,
both in its methodologies, empirical and theoretical, and in the time-scale of its
ambitions, from near-term applications to the long-term goal of understanding
human-level intelligence. Related to this is the continuing influx of new people
and ideas from other fields and from around the world. If reinforcement learning
can remain open to diverse inspiration while remaining focused on the ubiquitous
problems of prediction and control, then its future seems bright indeed.

Richard Sutton

Preface

This volume contains a selection of papers dedicated to the field of reinforce-
ment learning. This volume is an outcome of the 8th European Workshop on
Reinforcement Learning (EWRL), that was held in Villeneuve d’Ascq, France,
from June 30 to July 3, 2008. As the eighth in the series, the event was a distant
follower of the first workshop that was held in Brussels, Belgium, in 1994. Since
then, with an average bi-annual frequency, EWRL has gathered mostly Euro-
pean researchers, aiming at being a very open forum dealing with the current
research in reinforcement learning. While keeping this openness in the organiza-
tion, we thought the time has come to make EWRL something bigger; we have
tried to gather together researchers world-wide, to have a great scientific event
entirely dedicated to the research in reinforcement learning. Still, we wished to
keep it wide open to students, PhD students, but also, future PhD students, and
let them hear and meet some of the top researchers in the field.

The call for papers attracted 61 propositions, among which were 13 copy-
righted papers, and 1 tutorial. Each non-copyrighted paper was reviewed by
three reviewers. A light selection for presentation during the workshop resulted
in the presentation of 50 papers and the tutorial. Based on these reviews, con-
tributors were invited to improve their papers and resubmit them for publication
in the proceedings. After careful reviewing, we selected 21 papers to be included
in this volume.

The program of the workshop also included three invited speakers, namely,
Richard S. Sutton, from the University of Alberta in Edmonton, Canada, Dim-
itri Bertsekas, from the Massachussetts Institute of Technology, USA, and Jan
Peters, from the Max Planck Institute, Tübingen, Germany.

The workshop itself gathered 105 participants, among them, 44 PhD stu-
dents, 10 post-doctoral fellows, 39 academics, 8 undergarduate students, and 4
researchers working in private companies. While 47 % of the participants were
French, 16 % were Belgian, 9 % were Canadians, 7 % were German, 7 % were
Dutch, and other participants came from the USA, China, South Africa, Israel,
and other European countries; overall 13 different countries were represented.

A restricted number of travel grants was available for students. They were
granted after a selection process based on the submission of a resume. Six stu-
dents benefited from these grants.

Wishing to be open to all researchers, registration to EWRL was free. The
organization was funded by the SequeL team project of INRIA, the “Collège
Doctoral Européen Lille Nord-Pas de Calais,” who funded the travel grants, the
INRIA Research Center “Lille-Nord Europe,” and the computer science labora-
tory (LIFL) of the University of Lille. EWRL benefited from their support, and
we would like to take the opportunity to acknowledge this help, and thank them
for it.

VIII Preface

EWRL 2008 would not have been a success without the help of many people.
First of all, we would like to thank all the contributors to the workshop. Among
them, we would like to offer special thanks to the three invited speakers who
readily accepted our invitation. The reviewers and the Program Committee did a
great job, which resulted in the program of the workshop and the papers selected
for this volume. The participants of the workshop made it a great, lively scientific
event. Many people worked behind the scenes: we would like to thank the “École
Centrale de Lille” (ECL) that hosted EWRL, its Secrétaire Général, Mr. Parisis,
who facilitated many things on the practical side, and the staff of the ECL. The
secretary of the workshop, Sandrine Catillon, from INRIA did a great deal of
work with skill and diligence; the management of the travel grants has been
magnificantly handled by Hélène Fourmentraux from the LIFL. We would also
like to take the opportunity to thank EasyChair, the free conference management
system, which managed the whole process of submission and reviewing, up to
the creation of the draft of the proceedings, according to Springer requirements;
Easy Chair definitely saved us a lot of time.

Finally, we would also like to thank Springer for their early support in this
endeavor; Springer promptly accepted to publish these proceedings in their re-
known Lecture Notes in Artificial Intelligence series while the organization of
EWRL 2008 was still in a very early stage, and its success was still unsure.

September 2008 Sertan Girgin
Manuel Loth
Rémi Munos

Philippe Preux
Daniil Ryabko

Organization

Program Chairs

Sertan Girgin
Manuel Loth
Rémi Munos
Philippe Preux
Daniil Ryabko

Program Committee

Peter Auer
Sébastien Bubeck
Rémi Coulom
Peter Dayan
Kurt Driessens
Alain Dutech
Yaakov Engel
Damien Ernst
Frédérick Garcia
Mohammad Ghavamzadeh
Daniel Kudenko
Michail G. Lagoudakis
Pier Luca Lanzi
Jérémie Mary
Francisco Melo
Ann Nowé
Jan Peters
Olivier Pietquin
Martin Riedmiller
Régis Sabbadin
Bruno Scherrer
Olivier Sigaud
Csaba Szepesvari
Chris Watkins
Shimon Whiteson
Marco Wiering
Jeremy Wyatt
Martin Zinkevich
Martijn van Otterlo

Table of Contents

Lazy Planning under Uncertainty by Optimizing Decisions on an
Ensemble of Incomplete Disturbance Trees . 1

Boris Defourny, Damien Ernst, and Louis Wehenkel

Exploiting Additive Structure in Factored MDPs for Reinforcement
Learning . 15

Thomas Degris, Olivier Sigaud, and Pierre-Henri Wuillemin

Algorithms and Bounds for Rollout Sampling Approximate Policy
Iteration . 27

Christos Dimitrakakis and Michail G. Lagoudakis

Efficient Reinforcement Learning in Parameterized Models: Discrete
Parameter Case . 41

Kirill Dyagilev, Shie Mannor, and Nahum Shimkin

Regularized Fitted Q-Iteration: Application to Planning 55
Amir massoud Farahmand, Mohammad Ghavamzadeh,
Csaba Szepesvári, and Shie Mannor

A Near Optimal Policy for Channel Allocation in Cognitive Radio 69
Sarah Filippi, Olivier Cappé, Fabrice Clérot, and Eric Moulines

Evaluation of Batch-Mode Reinforcement Learning Methods for Solving
DEC-MDPs with Changing Action Sets . 82

Thomas Gabel and Martin Riedmiller

Bayesian Reward Filtering . 96
Matthieu Geist, Olivier Pietquin, and Gabriel Fricout

Basis Expansion in Natural Actor Critic Methods . 110
Sertan Girgin and Philippe Preux

Reinforcement Learning with the Use of Costly Features 124
Robby Goetschalckx, Scott Sanner, and Kurt Driessens

Variable Metric Reinforcement Learning Methods Applied to the Noisy
Mountain Car Problem . 136

Verena Heidrich-Meisner and Christian Igel

Optimistic Planning of Deterministic Systems . 151
Jean-François Hren and Rémi Munos

Policy Iteration for Learning an Exercise Policy for American
Options . 165

Yuxi Li and Dale Schuurmans

XII Table of Contents

Tile Coding Based on Hyperplane Tiles . 179
Daniele Loiacono and Pier Luca Lanzi

Use of Reinforcement Learning in Two Real Applications 191
José D. Mart́ın-Guerrero, Emilio Soria-Olivas,
Marcelino Mart́ınez-Sober, Antonio J. Serrrano-López,
Rafael Magdalena-Benedito, and Juan Gómez-Sanchis

Applications of Reinforcement Learning to Structured Prediction 205
Francis Maes, Ludovic Denoyer, and Patrick Gallinari

Policy Learning – A Unified Perspective with Applications in
Robotics . 220

Jan Peters, Jens Kober, and Duy Nguyen-Tuong

Probabilistic Inference for Fast Learning in Control 229
Carl Edward Rasmussen and Marc Peter Deisenroth

United We Stand: Population Based Methods for Solving Unknown
POMDPs . 243

Noel Welsh and Jeremy Wyatt

New Error Bounds for Approximations from Projected Linear
Equations . 253

Huizhen Yu and Dimitri P. Bertsekas

Markov Decision Processes with Arbitrary Reward Processes 268
Jia Yuan Yu, Shie Mannor, and Nahum Shimkin

Author Index . 283

Lazy Planning under Uncertainty
by Optimizing Decisions on an Ensemble

of Incomplete Disturbance Trees

Boris Defourny, Damien Ernst, and Louis Wehenkel

University of Liège,
Department of Electrical Engineering and Computer Science,

Grande Traverse, 10, Sart-Tilman, B-4000 Liège, Belgium
{Boris.Defourny,dernst,L.Wehenkel}@ulg.ac.be

Abstract. This paper addresses the problem of solving discrete-time
optimal sequential decision making problems having a disturbance space
W composed of a finite number of elements. In this context, the problem
of finding from an initial state x0 an optimal decision strategy can be
stated as an optimization problem which aims at finding an optimal com-
bination of decisions attached to the nodes of a disturbance tree modeling
all possible sequences of disturbances w0, w1, . . ., wT−1 ∈ W T over the
optimization horizon T . A significant drawback of this approach is that
the resulting optimization problem has a search space which is the Carte-
sian product of O(|W |T−1) decision spaces U , which makes the approach
computationally impractical as soon as the optimization horizon grows,
even if W has just a handful of elements. To circumvent this difficulty, we
propose to exploit an ensemble of randomly generated incomplete distur-
bance trees of controlled complexity, to solve their induced optimization
problems in parallel, and to combine their predictions at time t = 0
to obtain a (near-)optimal first-stage decision. Because this approach
postpones the determination of the decisions for subsequent stages un-
til additional information about the realization of the uncertain process
becomes available, we call it lazy. Simulations carried out on a robot
corridor navigation problem show that even for small incomplete trees,
this approach can lead to near-optimal decisions.

Keywords: Stochastic dynamic programming, Ensemble methods.

1 Introduction

The discrete-time optimal control paradigm can be used to formalize a broad
class of problems arising in a variety of fields such as finance, automatic control,
robotics, or operations research. In this paradigm, at each time step t, the deci-
sion maker measures the state xt ∈ X of the environment and takes a decision
ut ∈ U according to his decision rule. As a result of his decision, the environment
transits to a new state xt+1 and the decision maker observes a scalar reward sig-
nal rt which reflects in some way the impact of his decision on his performance

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 1–14, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 B. Defourny, D. Ernst, and L. Wehenkel

criterion. The environment behavior as perceived by the decision maker can be
in general nonlinear and stochastic.

In this paper, we assume that the stochastic nature of the environment is mod-
eled by an exogenous disturbance process (wt ∈W) which acts as an additional
input on the state transitions. We also assume that this process is memoryless
and that the optimality criterion J of the decision maker is the expected value
of the sum of rewards rt over a finite number T of stages. Within this context,
we focus on the computation of decisions that maximize J when a model of the
environment is provided to the decision maker in terms of the initial condition
x0, a full specification of the stochastic process wt, and the functions ft(·, ·, ·)
and rt(·, ·, ·) allowing to compute xt+1 and rt from xt, ut and wt.

Different strategies can be thought of for computing decisions in such a con-
text. One of them would be to compute a fixed sequence of decisions u0, u1,
. . ., uT−1 from the available information. Solving the problem in this manner is
equivalent to searching in the space UT = ×T−1

t=0 U an element that maximizes
the optimality criterion. This approach, also known as the open-loop approach, is
very convenient for solving problems for which the dynamics of the environment
is linear and deterministic, and the optimality criterion J convex. Indeed, under
these conditions, efficient algorithms for searching for the best element in UT

exist, and it can be shown that among the set of all plausible decision rules, the
one deduced by such an approach is optimal within this restricted context [1,2].

Putting aside the difficulty of solving this optimization problem for more gen-
eral classes of problems, the open-loop approach is intrinsically less attractive
for stochastic problems since the sequence of decisions so obtained is generally
quite suboptimal with respect to the use of optimal closed-loop decision rules,
i.e. decision rules which determine the current action from the current time and
current information available about the state of the environment. While the sub-
optimality of the open-loop approach could to some extent be decreased if at
time t > 0, the last remaining T − t decisions were reoptimized by taking into
account that the system is in state xt at time t, something it was impossible to
predict at times 0, 1, . . . , t− 1 due to the stochasticity of the system, the inher-
ent suboptimality of such a time receding open-loop approach remains because
the stochastic nature of the problem is not explicitly taken into account when
computing the sequence of decisions.

Actually, some approaches exist to extend in an optimal way the open-loop
philosophy to stochastic problems [3]. For easing subsequent discussions, we will
suppose that the disturbance space W of the stochastic optimal control problem
is finite. The main philosophy behind these approaches is the following. First,
they generate all the |W |T possible T -stage disturbance scenarios w0, w1, . . .,
wT−1. Secondly, they associate to each one of these scenarios and each possible
sequence of decisions a return. Then they determine by solving in one single
optimization problem |W |T sequences of decisions of length T , one for each sce-
nario, such that the expected return over all the scenarios is maximized. By
imposing the constraint that the first t decisions of two such sequences corre-
sponding to two scenarios having the same t− 1 first elements w are the same,

Lazy Planning under Uncertainty on an Ensemble of Incomplete Trees 3

these techniques can be used to determine optimal decision rules which asso-
ciate a decision to each time step t and any partial sequence of disturbances
w0, . . . , wt−1. An immediate variant of this approach which represents implicitly
the equality constraints over the decisions (called non-anticipativity constraints)
is obtained by reformulating the optimization problem on a disturbance tree.

One main drawback of these disturbance tree approaches for solving stochastic
optimal control problems is related to the size of the optimization problem they
require to solve. Indeed, the search space for these optimization problems is the
Cartesian product of n decision spaces U where n is O(|W |T−1). This exponential
growth makes the approach rapidly computationally impractical as soon as T
grows, even if W has only a few elements.

In order to circumvent this difficulty, we propose in this paper an alternative
approach exploiting an ensemble of randomly generated incomplete disturbance
trees of controlled complexity. In this approach, the incomplete disturbance trees
are built by developing each node only partially, that is by not necessarily associ-
ating to a non-terminal node |W | children nodes. More specifically, our strategy
for selecting the disturbances for developing a node is nondeterministic and tends
to develop less the nodes as the tree depth increases. This strategy depends on pa-
rameters that control the expected number of nodes of a tree, and, consequently,
which influence the size of the search space for the optimization problem since it
is equal to the Cartesian product of n decision spaces U , where n is the number
of nonterminal nodes of the tree. The optimization problems induced by these
trees can be solved in parallel. Their predictions at time t = 0 are combined in
order to compute a (near-)optimal first-stage decision for the problem at hand.
We call this approach lazy, in order to stress the fact that it postpones the de-
termination of the decisions for subsequent stages until additional information
about the realization of the uncertain process becomes available1. We provide
simulation results carried out on a robot navigation problem which suggest that
the proposed framework can strongly improve the computational performances
of the original disturbance tree approach for planning under uncertainty while
being only slightly suboptimal.

The rest of the paper is structured as follows. Section 2 discusses our “ensem-
ble of incomplete disturbance trees” approach with respect to different works in
planning under uncertainty and machine learning. In Section 3, we specify the
type of planning under uncertainty problem considered in this paper and show
how the problem of finding an optimal decision strategy can be reformulated as
an optimization problem on a disturbance tree. This section also describes an
example of application of this technique to a robot navigation problem when
solving the optimization problem by using a Cross-Entropy based algorithm.
Section 4 describes our ensemble of incomplete disturbance trees approach for
deriving the first-stage decision and evaluates its performances on the robot
navigation benchmark problem. Finally, Section 5 concludes.

1 The term “lazy” is used in compiler theory and machine learning in order to qualify
algorithms which delay computations until enough information is available to decide
that they indeed need to be carried out [4,5].

4 B. Defourny, D. Ernst, and L. Wehenkel

2 Related Work

The paradigm of optimizing decisions on a disturbance tree has already been
studied by several authors. Most of their works have been carried out by assum-
ing that the system dynamics is linear and by supposing as disturbance spaces
compact subsets of Rn. One central theoretical result in this field is that as the
discretization of the disturbance space becomes finer, the suboptimality of the
approach decreases to zero [6,7]. Approaches proposed for building the distur-
bance trees have been diverse but the central motivation behind them is always
the same: having a small disturbance tree which leads to a near-optimal decision
rule. As different strategies used for building these trees, one can mention those
which interlace the building of the tree with the optimization process [8] or those
which optimize decision variables once the tree is built. For these latter ones, one
distinguishes methods based on Monte Carlo sampling [9], on the preservation
of the statistical properties [10], and on the minimization of probability metrics
between the target and the approximate distribution [11,12].

When the disturbance space is composed of a single element (deterministic
environment), these disturbance tree approaches degenerate into the computa-
tion of an open-loop sequence of decisions. The computation of such sequences
of decisions is at the heart of the vastly successful Model Predictive Control
techniques which combine their computation with some time receding horizon
strategies [1,2,13]. These techniques have also been extended to stochastic en-
vironments but rather by using some min-max approaches aimed at finding a
solution which is optimal with respect to the worst-case “disturbance sequence”
[14], rather than by trying to maximize a compound return function J .

The approach proposed in this paper for alleviating the computational bur-
dens related to the disturbance tree paradigm is the first one which proposes to
build an ensemble of models and to aggregate their solution, with the exception
perhaps of the work of Nesterov and Vial, who develop in [15] similar ideas for
highly structured environments. However, the idea of aggregating the individual
outputs of an ensemble of models has already been vastly exploited in machine
learning, and especially in supervised learning (classification and regression). As
way of example, one can mention the boosting method [16] which builds models
sequentially and refines the output regions where the errors are important or the
bagging method which builds the models in parallel from some randomized sets
of data [17]. These ideas of aggregating the predictions of an ensemble of models
have also already been used for planning under uncertainty but in the context
where closed-loop decision rules are computed [18,19].

Finally, we mention the work of Kearns et al. [20] who propose to solve stochas-
tic planning problems by developing a tree where each branch corresponds to
a decision-disturbance pair. They apply the dynamic programming principle on
the tree to compute decisions and show under some particular conditions that
sparse sampling of the disturbances suffices to compute near-optimal decisions.
As in our approach, the complexity of their tree does not depend on the number
of states. However, and contrary to the disturbance tree approach, their tree size
grows (rapidly) with the cardinality of the set of possible actions U .

Lazy Planning under Uncertainty on an Ensemble of Incomplete Trees 5

3 Planning over a Disturbance Tree

3.1 Formalization

Our first task will be to formulate a sequential decision problem over a time
horizon T , and to explain how a decision making strategy can be evaluated on
a complete disturbance tree of depth T .

We consider a system that evolves according to a state transition function
xt+1 = ft(xt, ut, wt) starting from a fixed initial state x0. Its trajectories are
controlled by the decisions ut ∈ U and perturbed by disturbances wt ∈ W , which
are drawn independently from a finite time-invariant probability distribution
Pw

2. A reward process r0, r1, . . . , rT is defined by rt = rt(xt, ut, wt) for 0 ≤ t < T
and rT = rT (xT). The goal is to find a strategy µ maximizing the expectation
of a discounted sum of the rewards, with 0 < γ ≤ 1 the discount factor3:

J∗(x0) = max
µ

E

{
T−1∑
t=0

γtrt(xt, ut, wt) + γT rT (xT)

}
. (1)

In the disturbance tree framework, the strategy µ for selecting a decision ut at
time 0 ≤ t < T consists in deterministic mappings µt from current histories
ht = [w0, w1, . . . , wt−1] of the disturbance process to decisions ut at time t. The
mapping at time 0 degenerates into a fixed decision u0, the history at time 0
being empty. This class of strategies is in principle more general than the class of
time-dependent strategies mapping the state xt to a decision ut, since the state
xt can always be recovered by the procedure described in Table 1. However,
when the disturbance process is memoryless, these two classes of strategies are
equivalent in terms of optimality.

Table 1. How to recover states from disturbance histories

Input: An initial state x0, a history of the disturbance process ht = [w0, w1, . . . , wt−1],
a strategy µ0, µ1, . . . , µt−1 for computing decisions up to time t − 1.
Output: The state xt.

1. Initialization: Set x to x0 and τ to 0.
2. While τ < t, set u to µτ (w0, w1, . . . , wτ−1), set x to fτ (x, u, wτ), and increment τ .
3. Return x.

The complete disturbance tree represents all the possible outcomes of the
process w0, w1, . . . , wT−1. Its construction is given in Table 2. To each node n
of depth 0 < t ≤ T in the tree corresponds a history hn = [w0, . . . , wt−1]n of the
process, through the unique path from the root to the node n. The disturbance

2 Independence of the wt is imposed only to simplify the presentation and facilitate
the parallel with the dynamic programming framework.

3 More general objective functions could also be considered in this framework.

6 B. Defourny, D. Ernst, and L. Wehenkel

Table 2. How to build a complete disturbance tree

Input: The horizon T , the disturbance space W = {W1, . . . , Wm}, the probabilities
Pj = P(wt = Wj).
Output: A complete disturbance tree over the finite horizon T .

1. Initialization : Create a root node of depth 0.
Associate the probability 1 to the root. Set t = 0.

2. While t < T :
For each node n of depth t, create m successor nodes (of depth t+1) with associated
values W1, . . . , Wm and probabilities P1, . . . , Pm.
Increment t.

3. Return the tree structure and the values wn and probabilities pn associated to its
nodes n. (Now wn denotes a value of wt, where t is the depth of node n.)

Table 3. Evaluation of the expected value of a strategy on a disturbance tree

Input: A disturbance tree, an initial state x0, a strategy µ represented by decisions un

associated to the nodes n of depth 0 ≤ t < T .
Output: The expected value of the decision making strategy.

1. (Computation of the rewards rn associated to the nodes of the tree.)
Associate the initial state x0 to the root node. Set t to 1.
While t ≤ T :
For each node n of depth t: Identify the parent node n′ and associate
xn = ft−1(xn′ , un′ , wn) and rn = rt−1(xn′ , un′ , wn) to node n.
Increment t.

2. (Computation of the expected discounted sum of rewards by backpropagation.)
Associate Jn = rT (xn) to each node n of depth T . Set t to T − 1.
While t ≥ 0:
For each node n of depth t: Identify the set of successor nodes S(n), and associate
Jn =

P
n′∈S(n) pn′ · (rn′ + γJn′) to node n.

Decrement t.
3. Return the value Jn associated to the root node.

Clearly, this value is equal to E{
PT−1

t=0 γtrt(xt, ut, wt) + γT rT (xT)}
where ut = µt(w0, . . . , wt−1).

(wt−1)n is directly associated to node n, while [w0, . . . , wt−2]n can be collected
from the disturbances associated to the nodes in the path. The root, at t = 0,
has an empty history. The strategy µ can thus be represented on the tree by
associating to each node n of depth 0 ≤ t < T the value un = µ(hn).

Alternatively, searching for an optimal strategy becomes equivalent to opti-
mizing the values un. To this end, states xn, rewards rn and partial sums Jn are
associated to nodes n. This helps to compute the expected value of an arbitrary
strategy µ represented by particular values for un. Table 3 describes the full
process. The optimization itself is done directly over the node variables un. The
algorithm of Table 3 will serve as an oracle for scoring the strategy.

Lazy Planning under Uncertainty on an Ensemble of Incomplete Trees 7

t=0 1 2 t=T

N1: u=1
x=2, J=1.502

N2: u=1
x=4, J=3.219

N3: u=1
x=3, J=1.406

N4: u=−1
x=2, J=0.644

N5
x=6, r=5

N6: u=1
x=5, J=3.750

N7: u=1
x=4, J=1.250

N8: u=1
x=5, J=3.750

N9: u=1
x=4, J=1.250

N10: u=1
x=3, J=0.000

N11: u=−1
x=2, J=0.250

N12: u=−1
x=1, J=0.750

N13
x=0, r=1

N14
N15
N16
N17, x=6, r=5
N18, x=6, r=5
N19, x=5
N20, x=6, r=5
N21, x=5
N22, x=4
N23, x=6, r=5
N24, x=6, r=5
N25, x=5
N26, x=6, r=5
N27, x=5
N28, x=4
N29, x=5
N30, x=4
N31, x=3
N32, x=2
N33, x=1
N34, x=0, r=1
N35, x=1
N36, x=0, r=1
N37, x=0, r=1
N38
N39
N40

1

0

−1

1

0

−1

1

0

−1

1

0

−1

1
0

−1

1
0

−1

1
0

−1

1
0

−1

1
0

−1

1
0

−1

1
0

−1

1
0

−1

1
0

−1

Fig. 1. A toy corridor problem on T = 3 with terminal states {0, 6}, starting from
x0 = 2, solved on a complete disturbance tree. The node disturbances wn are written
on the branches and the corresponding node probabilities (pn = 0.25 for wn = ±1,
pn = 0.5 for wn = 0) are omitted. The values un have been optimized, and this fully
specifies an optimal strategy µ. For instance, u = −1 at node N11 means that µ2(w0 =
−1, w1 = +1) = −1. A terminal state is reached at node N5, among other cases. This
makes the subtree beyond N5 useless, but only once the decisions are optimized. The
expected value of the strategy, J = 1.502, is read from the root node N1. Reported
values for xn, rn, Jn are those obtained with the last invocation of the algorithm of
Table 3, which served to score decisions un’s generated by the Cross-Entropy method.
For instance, the value J = 0.75 at node N12 comes from pN36rN36 + pN37rN37, in
accordance with the step 2 of Table 3.

3.2 Illustration

The following corridor navigation problem illustrates the search for an optimal
strategy on a complete disturbance tree.

Let X = {1, 2, . . . , S − 1} ∪Xterm, where Xterm = {0, S} is a set of terminal
states. Let W = {−1, 0, 1}, with probabilities Pw = {0.25, 0.50, 0.25}.

If xt /∈ Xterm, then U = {−1,+1} and⎧⎨⎩
xt+1 = xt + ut + wt, rt = 0 if 0 < xt + ut + wt < S
xt+1 = 0, rt = 1 if xt + ut + wt ≤ 0
xt+1 = S, rt = 5 if xt + ut + wt ≥ S.

If xt ∈ Xterm, then xt+1 = xt, rt = 0, and U is irrelevant.

8 B. Defourny, D. Ernst, and L. Wehenkel

The terminal rewards of equation (1) are set to rT (·) = 0.
In this section, T = 3, S = 6, γ = 0.9, and x0 = 2.
The complete disturbance tree is represented on Fig. 1, along with the op-

timized decisions un and the corresponding states xn, rewards rn, and partial
sums Jn. The Cross-Entropy method was used to find a global optimal solu-
tion for un. The reader may refer to [21] for more details on the Cross-Entropy
method, which was well adapted for the particular problem at hand. Simply
put, the Cross-Entropy method samples candidate solutions, using importance
sampling oriented towards candidate solutions with the highest scores. If the
method succeeds, then the output of Table 3 corresponds to (1). Otherwise, the
suboptimal solution that has been found may still be acceptable.

The decision making strategy reported on the figure is indeed optimal. The
value J = 1.502 corresponds to the value returned by the well-known value
iteration algorithm from dynamic programming, stopped after T = 3 iterations.

One can check on Fig. 1 that the mapping from states xt to decisions ut (which
is the kind of mapping considered in the value iteration algorithm) corresponding
to the history-to-decision mapping found on the disturbance tree is time-variant4.

4 Lazy Approach Using an Ensemble of Incomplete
Disturbance Trees to Derive a First-Stage Decision

4.1 Principle

Our second task will be to explain how we can advantageously work on an
ensemble of incomplete disturbance trees to determine an optimal first-stage
decision.

The representation of a strategy µ by decisions un defined on the nodes of
the complete disturbance tree shows that an incomplete disturbance tree will
only permit an incomplete description of a strategy. However, we restrict our
attention to the first-stage decision u0, and assume that the optimization of
incomplete strategies will give some valuable information on u0. We thus pro-
pose to aggregate several first-stage decisions obtained from several incomplete
strategies optimized on several incomplete disturbance trees. The full process,
based on a majority vote for the decision u0 and described in Table 4, can be
restarted at each time step, with the current state as the initial condition.

An incomplete disturbance tree can be built using the randomized algorithm
given in Table 5. Starting from the root, the algorithm creates for each node a set
of successor nodes by sampling disturbances. Distinct samples form the successor
nodes, while the sample multiplicities serve to define node probabilities. The
growth of the tree is controlled by choosing a random number m of samples to
draw.

The probability distribution of m is an input for the algorithm. For building
deeper trees while preserving the branching structure allowed on shorter time
4 For instance the nodes N1 (t = 0) and N4 (t = 1) share the state x = 2 but differ in

the decision.

Lazy Planning under Uncertainty on an Ensemble of Incomplete Trees 9

Table 4. Computing a decision at time t = 0 with an ensemble of M incomplete trees

Input: The initial state x0, the optimization horizon T , the desired number M of trees,
a specification of the disturbance process wT−1

t=0 .
Output: A decision u0 to be applied at time 0.

1. Build in parallel M incomplete disturbance trees of depth T .
2. Optimize in parallel a decision making strategy on each tree.
3. Return the decision obtained by a majority vote over the M first-stage decisions

u0 gathered from the roots of the M trees.

Table 5. How to build an incomplete disturbance tree for a discrete, time-invariant,
and memoryless disturbance process

Input: The disturbance space W , the probabilities Pw, the tree depth T .
Parameters: Probability distributions QA, QB , both of support in {1, 2, . . . , q}

where q is the maximal allowed number of samples.
Output: An incomplete disturbance tree over the horizon T .

1. Initialization : Create a root node of depth 0.
Associate the probability 1 to the root. Set t = 0.

2. While t < T :
Set α to 1/(1 + t). Set Qt to αQA + (1 − α)QB .
For each node n of depth t:
Draw a random number m according to Qt. Draw m samples in W according to Pw.
Obtain m′ ≤ m distinct samples [w(1), . . . , w(m′)] of multiplicity [k(1), . . . , k(m′)].
Create m′ successor nodes (of depth t + 1) with associated values w(1), . . . , w(m′)

and probabilities k(1)/m, . . . , k(m′)/m.
Increment t.

3. Output the incidence structure of the tree, and the values wn and probabilities pn

associated to each one of its nodes n.

horizons, it might be advantageous to let the distribution of m evolve with the
depth of the tree. A simple way to do that consists in mixing 2 probability
distributions QA and QB with relative weights depending on the depth. More
specifically, the probability that m = j for a node of depth t is set to

Qt(m = j) = αQA(m = j) + (1− α)QB(m = j) (2)

with α � 1/(1 + t) moving progressively from 1 to 0 as the depth t increases.
Trees are likely to feature sequences of disturbances with few branchings beyond
a certain depth when QB is concentrated on small values of m such as 1 or 2. Of
course, the algorithm can be run with fixed branching probabilities by setting
QA ≡ QB. However, if QB has its mass concentrated on 1, the expected number
of nodes is asymptotically linear with the depth T of the tree. This strongly
contrasts with the exponential growth of the size of the complete tree with T .

It is easy to estimate by Monte Carlo simulation the expected size of an incom-
plete tree for given depth T , number of disturbances |W | and probabilities QA,

10 B. Defourny, D. Ernst, and L. Wehenkel

QB. Therefore, it is possible to choose QA and QB so that the expected size of a
tree is in line with the size of the optimization problem one is able to deal with.

4.2 Illustration

The corridor navigation problem of Section 3 will illustrate the clear benefit
in terms of computational complexity of working on an ensemble of incomplete
disturbance trees instead of a unique complete tree. A set of simulations is run
with S = 10, T = 6, γ = 0.7, on different initial conditions x0.5

The problem is solved for x0 = 3 on a complete tree (composed of 1093
nodes) in a reasonable time. This permits to report relative time savings for
the solution on incomplete trees. A majority vote over M = 100 incomplete
trees gives the first decision u0. Subsequent decisions are ignored, assuming that
simpler problems on shorter time horizons will be solved to obtain u1, u2, . . . as
soon as x1, x2, . . . are known.

Table 6 gives the 4 representative choices for the distributions QA and QB

that have been considered as parameters of the tree generation algorithm, along
with their macroscopic effect on the size of a tree of depth T = 6.

Table 7 shows that with the first choice (Test I), the trees reduce to T -length
sequences of disturbances. Wrong decisions for x0 = 4 and x0 = 5 indicate that
this structure is too weak. Test IV leads to moderately dense trees and right
decisions. Beside these two extremes, Test II uses fixed probabilities for the
number of disturbances to sample and Test III use decaying probabilities. The
setting for Test III dominates the one for Test II, because it produces smaller
trees while these trees prove more reliable on the initial condition x0 = 4: they
advocate the optimal decision more often.

Table 6. Representative settings for the probability distributions of the number of
samples per node, and their effect on the size of the incomplete trees

QA
† QB Short description Number of nodes ‡

Mean Std dev.
I [1 0 0] [1 0 0] Always draw 1 sample. 7 0
II [1 1 1]/3 [1 1 1]/3 1,2,3 samples with prob. 1/3. 39.31 22.31
III [0 0 1] [1 0 0] Deeper, draw 1 instead of 3. 29.87 13.10
IV [0 0 1] [0 0 1] Always draw 3 samples. 136.25 53.28

† QA = [1 0 0] means that the probability of drawing 1, 2, 3 samples is respectively
1, 0, 0 under the distribution QA that parameterizes the algorithm of Table 5. The
number of children nodes may be less, depending on the number of distinct samples.
‡ Estimated by building 400 trees of depth T = 6. A complete tree has 1093 nodes.

5 We used a larger optimization horizon T than in Section 3 to better highlight the
performances of our approach. The value of γ differs also from the one previously
chosen (now 0.7 rather than 0.9) to have an optimal first-stage decision that varies
with the initial state, so as to make the example more interesting.

Lazy Planning under Uncertainty on an Ensemble of Incomplete Trees 11

Table 7. Decisions obtained with incomplete trees on the corridor problem with ter-
minal states {0, 10}, T = 6, and γ = 0.7. The 4 settings of Table 6 are tested. Basically,
decisions are correct when the trees are not too small.

Decision u†
0 Time‡ Typical tree

x0 = 2 x0 = 3 x0 = 4 x0 = 5
Optimal: -1 -1 +1 +1

Test I
-1

(93%)
-1

(78%)
-1

(66%)
-1

(51%) 0.04%

Test II
-1

(96%)
-1

(82%)
+1

(54%)
+1

(81%) 0.42%

Test III
-1

(95%)
-1

(80%)
+1

(63%)
+1

(88%) 0.15%

Test IV
-1

(98%)
-1

(91%)
+1

(71%)
+1

(100%) 2.41%

† Initial decision obtained by a majority vote on M = 100 trees, with the share in
parenthesis. Separate tests are conducted for the 4 mentioned initial states x0.
‡ Mean computation time for solving 1 incomplete tree (case x0 = 3), in percentage of
the time required to solve the complete disturbance tree for the same problem. Time
savings are huge.

Beyond the huge time savings, the tests have also revealed an unexpected
advantage of using the Cross-Entropy method on incomplete trees. Suboptimal
solutions indeed arise more frequently on the complete tree than on the smaller
incomplete ones, by a simple scale effect. A wrong decision can thus be inferred
from a suboptimal solution on the complete tree, while the majority vote from
solutions on incomplete trees yields a correct decision in a more reliable way.

5 Conclusions

This paper has proposed an approach for alleviating the computational burdens
of the original disturbance tree paradigm for planning under uncertainty. The
approach builds an ensemble of small trees, solves in parallel the small size
optimization problems which correspond to these trees and aggregates their first-
stage decisions. Applying this algorithm in a time receding fashion results in a
lazy decision making strategy which computes at each time step the decision to
apply given all the available information, thereby focusing only on the particular
subproblem to solve rather than trying to pre-compile once and for all a decision
strategy that would be applicable to all kinds of realizations of the environment
under control. This approach has been evaluated on a robot navigation problem
and the results obtained are encouraging. Indeed, with an ensemble of small
trees (especially with respect to the fully developed one), it has been possible to
obtain in a reliable way accurate predictions of the optimal first-stage decision.

12 B. Defourny, D. Ernst, and L. Wehenkel

While the strategy adopted in this paper for building the incomplete trees is
giving good results, we do not exclude that it could still be significantly improved
by for example relying on other sampling procedures than a pure Monte Carlo
one for developing a disturbance tree node. It would also be interesting to study
to which extent some specific optimization tools could be customized to the
structure of the optimization problem defined by a disturbance tree for leverag-
ing their performances. Besides the study of the algorithmic improvements that
could be brought to our multi-tree framework, it would also be interesting to
establish its theoretical properties. For example, it would be informative to know
(even under some highly restrictive assumptions on the environment structure)
some upper bounds (in probability) on the suboptimality of the decision rules
with respect to the size of the ensemble, the variance of the computed decisions
or the computational complexity of these multi-tree based algorithms.

Also, while we have in this paper worked out the approach in the context
of a memoryless disturbance process, in which case the state of the system un-
der control is a sufficient statistic to take decisions, our approach extends in a
straightforward way to general disturbance processes, or in other words to par-
tially observable environments. Further work should thus be carried out to study
in more depth the pros and cons of this approach with respect to the literature
on partially observable Markov decision processes [22,23].

Another important direction of research concerns the extension of this ap-
proach to continuous disturbance processes. Some preliminary work [24,25] along
these lines shows that in this context it is important to properly choose the way
in which the continuous disturbance process is discretized in order to generate
the disturbance trees.

Overall, the approach presented in this paper adds to the arsenal of methods
for planning under uncertainty. However, it is not yet clear how it would compete
for some specific classes of problems with algorithms exploiting other paradigms,
such as the dynamic programming paradigm [26] or the direct closed-loop pol-
icy search one [27]. All these paradigms have pros and cons, and establishing
which one, or which combination of paradigms, to exploit for a specific problem
certainly deserves further research.

Acknowledgments. Damien Ernst acknowledges the financial support of the
Belgian National Fund of Scientific Research (FNRS) of which he is a Research
Associate. This paper presents research results of the Belgian Network DYSCO
(Dynamical Systems, Control, and Optimization), funded by the Interuniver-
sity Attraction Poles Programme, initiated by the Belgian State, Science Policy
Office. The scientific responsibility rests with its authors.

References

1. Maciejowski, J.: Predictive Control with Constraints. Prentice Hall, Englewood
Cliffs (2001)

2. Morari, M., Lee, J.: Model predictive control: past, present and future. Computers
and Chemical Engineering 23, 667–682 (1999)

Lazy Planning under Uncertainty on an Ensemble of Incomplete Trees 13

3. Birge, J., Louveaux, F.: Introduction to Stochastic Programming. Springer, New
York (1997)

4. Launchbury, J.: A natural semantics for lazy evaluation. In: POPL 1993: Proceed-
ings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pp. 144–154. ACM, New York (1993)

5. Friedman, J., Kohavi, R., Yun, Y.: Lazy decision trees. In: Proc. of 13th National
Conference on Artificial Intelligence, AAAI 1996. Part 1(of 2), pp. 717–724 (1996)

6. Heitsch, H., Römisch, W., Strugarek, C.: Stability of multistage stochastic pro-
grams. SIAM Journal on Optimization 17(2), 511–525 (2006)

7. Römisch, W.: Stability of stochastic programming problems. In: Ruszczyński, A.,
Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research
and Management Science, vol. 10, pp. 483–554. Elsevier, Amsterdam (2003)

8. Dempster, M.: Sequential importance sampling algorithms for dynamic stochastic
programming. Annals of Operations Research 84, 153–184 (1998)

9. Shapiro, A.: Monte Carlo sampling methods. In: Ruszczyński, A., Shapiro, A. (eds.)
Stochastic Programming. Handbooks in Operations Research and Management
Science, vol. 10, pp. 353–425. Elsevier, Amsterdam (2003)

10. Høyland, K., Wallace, S.: Generating scenario trees for multistage decision prob-
lems. Management Science 47(2), 295–307 (2001)

11. Hochreiter, R., Pflug, G.: Financial scenario generation for stochastic multi-stage
decision processes as facility location problems. Annals of Operations Research 152,
257–272 (2007)

12. Rachev, S., Römisch, W.: Quantitative stability in stochastic programming: The
method of probability metrics. Mathematics of Operations Research 27(4), 792–818
(2002)

13. Ernst, D., Glavic, M., Capitanescu, F., Wehenkel, L.: Reinforcement learning ver-
sus model predictive control: a comparison on a power system problem. IEEE
Transactions on Systems, Man and Cybernetics - Part B (to appear, 2008)

14. Kothare, M., Balakrishnan, V., Morari, M.: Robust constrained model predictive
control using matrix inequalities. Automatica 32, 1361–1379 (1996)

15. Nesterov, Y., Vial, J.P.: Confidence level solutions for stochastic programming.
Automatica 44(6), 1559–1568 (2008)

16. Schapire, R.: The strength of weak learnability. Machine Learning 5(2), 197–227
(1990)

17. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
18. Ernst, D., Geurts, P., Wehenkel, L.: Tree-based batch mode reinforcement learning.

Journal of Machine Learning Research 6, 503–556 (2005)
19. Sutton, R.: Generalization in reinforcement learning: successful examples using

sparse coarse coding. Advances in Neural Information Processing Systems 8, 1038–
1044 (1996)

20. Kearns, M., Mansour, Y., Ng, A.: A sparse sampling algorithm for near-optimal
planning in large Markov decision processes. Machine Learning 49(2-3), 193–208
(2002)

21. Rubinstein, R., Kroese, D.: The Cross-Entropy Method. A Unified Approach to
Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning. In:
Information Science and Statistics. Springer, Heidelberg (2004)

22. Cassandra, A., Kaelbling, L., Littman, M.: Acting optimally in partially observable
stochastic domains. In: Proceedings of the Twelfth National Conference on Arti-
ficial Intelligence (AAAI 1994), Seattle, Washington, USA, vol. 2, pp. 1023–1028.
AAAI Press/MIT Press, Menlo Park (1994)

14 B. Defourny, D. Ernst, and L. Wehenkel

23. Ng, A., Jordan, M.: PEGASUS: a policy search method for large MDPs and
POMDPs. In: Proceedings of the Sixteenth Conference on Uncertainty in Arti-
ficial Intelligence, pp. 406–415 (1999)

24. Defourny, B.: Approximate solution to multistage stochastic programs with ensem-
bles of randomized scenario trees. Master’s thesis, University of Liège, Department
of Electrical Engineering and Computer Science (2007)

25. Defourny, B., Wehenkel, L.: Averaging decisions from an ensemble of scenario trees:
a validation on newsvendor problems (submitted, 2008)

26. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
27. Sutton, R., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for re-

inforcement learning with function approximation. Advances in Neural Information
Processing Systems 12, 1057–1063 (2000)

Exploiting Additive Structure in Factored
MDPs for Reinforcement Learning

Thomas Degris, Olivier Sigaud, and Pierre-Henri Wuillemin

Université Pierre et Marie Curie - Paris6
4 place Jussieu, F-75005 Paris, France

thomas.degris@laposte.net, Olivier.Sigaud@lip6.fr,

Pierre-Henri.Wuillemin@lip6.fr

Abstract. sdyna is a framework able to address large, discrete and
stochastic reinforcement learning problems. It incrementally learns a
fmdp representing the problem to solve while using fmdp planning tech-
niques to build an efficient policy. spiti, an instantiation of sdyna, uses
a planning method based on dynamic programming which cannot ex-
ploit the additive structure of a fmdp. In this paper, we present two new
instantiations of sdyna, namely ulp and unatlp, using a linear program-
ming based planning method that can exploit the additive structure of
a fmdp and address problems out of reach of spiti.

1 Introduction

Markov Decision Processes (mdps) are a fundamental framework to model plan-
ning under uncertainty problems as well as Reinforcement Learning (rl) prob-
lems. Standard exact solution methods for both problems are known to work
well but are inappropriate for large problems because they require explicit state
space enumerations. Among different approximation techniques, factored mdps
(fmdps), first proposed by [1], assume the decomposition of the state space with
random variables. fmdps utilize dependencies between variables, defined using
Dynamic Bayesian Networks (dbns) [2], to compactly represent the transition
and reward functions of structured mdps.

When the structure of the transition and reward functions are fully known,
solution methods may be used to compute optimal (or near optimal) value func-
tions and policies of the fmdp. These solution methods are based on two different
classical techniques, namely Dynamic Programming (dp) and Linear Program-
ming (lp). First, algorithms such as Structured Policy Iteration (spi), Structured
Value Iteration (svi) and Stochastic Planning Using Decision Diagrams (spudd)
are based on dp [3,4] and mainly exploit context specific independence by using
structured representations (i.e. decision trees or decision diagrams) to manipu-
late the functions of the fmdps. Second, [5] proposes different algorithms based
on lp that can exploit additional regularities such as the additive decomposition
of the reward function and an additive approximation of the value function. We
name such regularities as additive structure of the problem.

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 15–26, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

16 T. Degris, O. Sigaud, and P.-H. Wuillemin

When the structure of the transition and reward functions are unknown, [6]
has proposed Structured dyna (sdyna). sdyna is a general framework combin-
ing supervised learning algorithms with planning methods to solve large, discrete
and stochastic rl problems. spiti is an instance of sdyna that uses an incremen-
tal decision tree induction algorithm combined with an incremental version of
svi. Consequently, spiti is not able to exploit additive structure of fmdps and is
very limited to represent and solve problems such as the SysAdmin problem [5].

In this paper, we describe two new instances of sdyna, namely ulp and
unatlp. Both instances use lp based planning method to exploit the additive
structure of the problem. Moreover, we propose in unatlp a different represen-
tation of the transition function in the fmdp that is learned. First, we show that
both ulp and unatlp are able to exploit the additive structure of a problem
without knowing its structure in advance, allowing these instances to address a
rl problem with 4 ·1013 state/action pairs. At this time, we are not aware of any
model-based rl algorithm able to solve such large problems without assuming
the knowledge of its structure. Second, we show that the new representation
of the fmdp in unatlp outperforms the one used in spiti and ulp on such
problems.

The remainder of this paper is organized as follows: in Section 2, we introduce
fmdps, the planning method based on lp proposed by [5] and sdyna. In Sec-
tion 3, we describe ulp and unatlp. Section 4 describes and discusses empirical
results of these instances on the SysAdmin problem.

2 Background

We first introduce some definitions used in this paper. A mdp is defined by a
tuple 〈S,A,R, P 〉 where S is a finite set of states, A is a finite set of actions, R
is the immediate reward function with R : S ×A→ IR and P is the Markovian
transition function P (s′|s, a) with P : S ×A× S → [0, 1]. A stationary policy π
is a mapping S → A with π(s) defining the action to be taken in state s.

We evaluate a policy π in state s, considering an infinite horizon, with the
value function Vπ(s) defined using the discounted reward criterion: Vπ(s) =
Eπ[

∑∞
t=0 γ

t · rt|s0 = s], with 0 ≤ γ < 1 the discount factor and rt the reward
obtained at time t. A policy π is optimal if ∀s ∈ S, ∀π′ : Vπ(s) > Vπ′(s). The
value function of an optimal policy π∗ is called optimal value function and is
noted V ∗.

The action-value function QV
a (s) for an action a and a value function V (s) is

defined as QV
a (s) = R(s, a)+ γ

∑
s′∈S P (s′|s, a)V (s′). For a given value function

V , it is possible to define a greedy policy relative to V , noted GreedyV , by taking
for each state s the action with the best action-value:

GreedyV (s) = arg max
a

[R(s, a) + γ
∑
s′∈S

P (s′|s, a)V (s′)] (1)

The greedy policy relative to V ∗ is an optimal policy π∗(s) = GreedyV ∗(s).

Exploiting Additive Structure in Factored MDPs for Reinforcement Learning 17

We now assume that states are composed of a set of random variables X =
{X1, . . . , Xn}. A state is then defined by a vector s = (x1, . . . , xn) with ∀i, xi ∈
Dom(Xi). fmdps are a framework exploiting the structure of the problem to
represent compactly large mdps [1]. For each action a, the transition model of
the fmdp is defined by a separate dbn model Ta = 〈Ga, {P a

X1
, . . . , P a

Xn
}〉. Ga is

a two-layer directed acyclic graph whose nodes are {X1, . . . , Xn, X
′
1, . . . , X

′
n}

with Xi a variable at time t and X ′
i the same variable at time t + 1. The

parents of X ′
i are noted Parentsa(X ′

i) with Parentsa(X ′
i) ⊆ X . The transition

model Ta is quantified by Conditional Probability Distributions (cpds), noted
P a

Xi
(X ′

i|Parentsa(X ′
i)), associated to each node X ′

i ∈ Ga.
A similar decomposition provides a compact representation of the reward

function. First, we formalize the concept of localized function [5]: a function f
has a scope Scope(f) = Y ⊆ X if f : Dom(Y) �→ IR. We use f(x) as shorthand
for f(y) where y is the part of the instantiation x corresponding to variables in
Y . The reward function may now be defined as the sum

∑r
j=1 Rj(s) ∈ IR where

each function Rj is a localized function with Scope(Rj) restricted to a small set
of variables. There may be a different decomposition Ra

j for each action a.

2.1 Linear Programming Based Approximation in MDPs

Different approaches may be used to compute the optimal policy in a mdp. One
approach is to represent the mdp as a linear program (lp) [7]. Such lp is defined
as:

For variables: V (s), ∀s ∈ S
Minimize:

∑
s α(s)V (s)

Subject to: V (s) ≥ R(s, a) + γ
∑

s′ P (s′|s, a)V (s′)∀s ∈ S, ∀a ∈ A (lp 1)

where α(s) are the state relevance weights (α(s) > 0 for each state s). One major
issue that prevents this lp from being applied to real problems is that it uses ex-
plicit enumerations of the state space which is usually very large. The remaining
of this section presents previous work from [5] to avoid such enumerations.

One approach to address large state space is to approximate value functions
with linear value function

∑k
i=1 wihi(s) for some coefficients (w1, . . . , wk). The

set {h1, . . . , hk} is a set of basis functions where each hi is a localized function,
defining the space H of allowable value functions. We discuss the choice of such
functions in section 5. Replacing explicit state value function V (s) by the ap-
proximation, (lp 1) is rewritten to produce an approximation of the optimal
value function of the mdp in H [8]:

For variables: w1, . . . , wk

Minimize:
∑

s α(s)
∑k

i=1 wihi(s)
Subject to:

∑k
i=1 wihi(s) ≥ R(s, a)+

γ
∑

s′ P (s′|s, a)
∑k

i=1 wihi(s′)∀s ∈ S, ∀a ∈ A (lp 2)

This linear program is guaranteed to be feasible if a constant function h0 is
included in the set of basis functions. We assume that this is the case in the
remaining of the paper.

18 T. Degris, O. Sigaud, and P.-H. Wuillemin

(lp 2) reduces the number of free variables from |S| to k. However, the
number of constraints remains |S|×|A|, each constraint is potentially a sum of |S|
terms, and the objective function is still a sum of |S| terms. We now describe an
outline of the method proposed by [5] to represent this linear program compactly,
exploiting the structure of the problem.

2.2 Linear Programming Based Approximation in Factored MDPs

The compact representation of (lp 2) is based on a factored linear value function
representation [9], that is a linear value function over the basis h1, . . . , hk where
each localized function hi is restricted to a small number of state variables. The
different restricted domain functions defined in the fmdp result in efficient com-
putations on compact representations over large state spaces. The first operation
is to compute the backprojection ga

i (s) =
∑

s′ P (s′|s, a)hi(s′) of a basis function
hi for an action a and given the graph Ga. Recalling that the scope of a basis
function hi is small, the backprojection may be simplified, as shown in [9]. The
scope of ga

i (s) is Scope(ga
i) = ∪X′

j∈Scope(hi)Parentsa(X ′
j). Consequently, the cost

of the computation depends linearly on |Dom(Scope(ga
i))|, which depends on the

scope of hi and the complexity of the graph Ga.
The state relevance weights α(s) in the objective function of (lp 2) may

be considered as distribution over states, so that α(s) > 0 and
∑

s α(s) = 1.
As suggested by [5], we use uniform state relevance weights defined as α(s) =
1
|S| . Using a different reorganisation of the set of constraints and the objective
function, a new linear program may be formulated [5]:

For variables: w1, . . . , wk

Minimize:
∑k

i=1 wiαi

Subject to: 0 ≥
∑k

i=1 wi[γga
i (s)− hi(s)] +

∑r
j=1 R

a
j (s) ∀s ∈ S, ∀a ∈ A (lp 3)

where αi =
∑

ci∈Dom(Ci) α(ci)hi(ci) with Ci = Scope(hi) and α(ci) the marginal
of the state relevance weights α over Ci.

(lp 3) has now only k free variables, k terms in the objective function and
each constraint may be computed on a restricted scope. However, the number of
constraints is still exponential. As described by [5], these constraints may be rep-
resented compactly using a variable elimination algorithm. We note FactoredALP
the algorithm building (lp 3) and returning the solution. We refer to [5] for a
comprehensive description of this algorithm.

2.3 Context-Specific Independence

Similarly to solution methods in fmdp such as spi, svi and spudd [3,4], [5]
exploits context-specific independence, using a rule-based representation [10], to
compute the backprojections and to reduce the number of constraints in (lp 3).
Entries with the same value of a function are referred to as consistent contexts.
Two contexts c ∈ Dom(C) and b ∈ Dom(B) with C ⊆ {X,X ′} and B ⊆ {X,X ′}
are defined as consistent if they have the same assignment for the variables in
C ∩B.

Exploiting Additive Structure in Factored MDPs for Reinforcement Learning 19

A probability rule η = |c : p| is a function η : {X,X ′
i} �→ [0, 1], where the

context c ∈ Dom(C), C ⊆ {X,X ′
i} and p ∈ [0, 1] and such that η(x, x′i) = p if

x and x′i are consistent with c and η(x, x′i) = 1 otherwise. A rule-based CPD
is a function Pa : ({X ′

i} ∪ X) �→ [0, 1] composed of a set of probability rules
{η1, . . . , ηn} whose contexts are mutually exclusive and exhaustive. A value rule
ρ = |c : v| is a function ρ : X → IR such that ρ(s) = v when s is consistent with
c and 0 otherwise. A rule-based function f : X �→ IR is composed of a set of rules
{ρ1, . . . , ρn} such that f(x) =

∑n
i=1 ρi(x). Both reward and basis functions may

be represented as a rule-based function.
The transition, reward and value functions in a fmdp may be represented

using rule-based representations. [5] utilizes this representation to rewrite the
computation of the backprojections and to represent (lp 3) compactly, ex-
ploiting context-specific independence. We refer to their paper for a complete
description.

2.4 Structured DYNA and Spiti

The solution method based on lp described in the previous section assumes that
the structure of the problem is available, which may not be the case in practice.
Recently, [6] has proposed Structured dyna (sdyna), that is a framework able
to learn the structure of a fmdp from experience. sdyna is described in Figure 1,
where Fact[F] represents a factored representation of a function F .

Input: Acting, Learn, Plan, Fact Output: ∅

1. Initialize the fmdp F0

2. At each time step t, with s the current (non-terminal) state, do:
(a) a ← Acting(s, {Fact[Qa

t−1],∀a ∈ A})
(b) Execute a; observe s′ and r
(c) Ft ← Learn(Ft−1, 〈s, a, s′, r〉)
(d) {Fact[Vt], {Fact[Qa

t], ∀a ∈ A}} ← Plan(Ft, Fact[Vt−1])

Fig. 1. The sdyna algorithm

sdyna is decomposed in three phases. First, from its current policy, repre-
sented as the set {Fact[Qa

t−1], ∀a ∈ A} of action-value function, an action is
executed during the acting phase (step 2.a, 2.b and 2.c). Second, from the obser-
vation 〈s, a, s′, r〉, the fmdp F representing a model of the problem is updated
during the learning phase (step 2.d). Finally, the set {Fact[Qa

t−1], ∀a ∈ A} of
action-value functions is updated during the planning phase (step 2.e).

spiti is an instantiation of sdyna, also presented in [6], that incrementally
learns structured representations of the transition and reward functions using
an induction of decision tree algorithm, noted UpdateTree(Tree[F], x, y) with
Tree[F] the decision tree representation of the function F to update, x the in-
put of F and y its output. First, for the action a of the observation, each cpd

20 T. Degris, O. Sigaud, and P.-H. Wuillemin

Tree[P a
Xi

] is updated with UpdateTree(Tree[P a
Xi

], (x1, . . . , xn), x′i) using the state
s = (x1, . . . , xn) as the set of inputs and the value of the variable Xi in s′ as
output. Second, the reward function Tree[R] is updated using the current state
and action as input and the reward observed as output. spiti uses χ2 as its
information-theoric metric. Moreover, a decision node in a tree Tree[P a

Xi
] is in-

stalled only if the χ2 value for the variable is above a threshold τχ2 [11]. spiti
uses an incremental version of the svi algorithm [3] during the planning phase to
update the set {Tree[Qa

t−1], ∀a ∈ A} of action-value functions. All the functions
of a fmdp, that is the cpds in the transition function, the reward function and
the value function, are represented with decision trees in spiti, as in svi.

3 Exploiting Additive Structure in SDYNA

spiti suffers from two strong limitations to be able to exploit the additive struc-
ture of a rl problem. First, the reward function is represented with one tree
Tree[R] which is not adapted to represent functions with an additive structure.
Second, it plans with an incremental version of svi, which is not able to exploit
the additive structure of a problem and performs very poorly on such problems
[3,5]. We address both issues in the remaining of this section by describing two
new instances of sdyna, namely ulp and unatlp.

3.1 Learning the Structure

To be able to learn additively decomposed reward functions, we assume that the
reward received by the agent from the environment is not a single real number
r ∈ IR but a vector r = (r1, . . . , rr) ∈ IRr where each rj is the reward associated
to the localized Rj function. Consequently, we assume neither the knowledge of
the scope nor the structure of context independencies of the localized functions.
Figure 2 shows the Learn(F , 〈s, a, s′, r〉) algorithm for both ulp and unatlp,
adapted from spiti, to learn additively decomposed reward functions.

The transition function in ulp is updated in the same way as the transition
function in spiti (step 1). However, because the reward r observed by the agent
is now decomposed as a vector of reward r = (r1, . . . , rr), a different tree Tree[Rj]
corresponding to a localized function Rj in R(s) =

∑r
j=1 Rj(s) is updated using

the current state as input and the reward rj in r as output (step 2).

Input: a fmdp F , an observation 〈s, a, s′, r〉 Output: ∅

1. For all Xi ∈ X:
In ulp: UpdateTree(Tree[P a

Xi
], 〈(x1, . . . , xn), x′

i〉)
In unatlp: UpdateTree(Tree[PXi], 〈(x1, . . . , xn), a, x′

i〉)
2. For all Rj ∈ R:

UpdateTree(Tree[Rj], 〈(x1, . . . , xn), a, rj〉)

Fig. 2. The Learn(F , 〈s, a, s′, r〉) algorithm in ulp and unatlp

Exploiting Additive Structure in Factored MDPs for Reinforcement Learning 21

Both spiti and ulp use one tree Tree[P a
Xi

] for each variable and each action
to represent the cpd P a

Xi
in a fmdp F . It is also possible to represent the

transition function with the action as a variable [12] with only one cpd PXi for
each variable Xi of the problem to quantify only one graph G (with an action
node) specifying variable dependencies in the transition function.

One drawback of this representation is that it is not possible to specify a de-
pendency between two variables for only one action in the graph G. For instance,
it is not possible to specify that X ′

i depends on Xj for the action ak, but not for
the other actions of the mdp. However, this drawback may be counterbalanced
by using structured representation of the cpds to exploit context specific inde-
pendence because probability distributions that do not depend on the action
executed by the agent can be aggregated.

unatlp uses such representation of the transition function. The difference
between ulp and unatlp to learn the fmdp is in step 1 (Figure 2) where each
cpd Tree[PXi], that is the tree representing PXi with the action considered as a
variable, is updated for each variable Xi using the current state and the action
executed by the agent as the set of attributes and the value of the variable Xi

in s′ as input.

3.2 Acting and Planning

sdyna does not need an explicit representation of the policy for the agent to
act. However, it requires a set of action-value functions to select an action
with the best action-value. We note Rules[F] a function F represented as a
rule-based function. Recalling equation 1 and using the factored linear value
function Rules[V], we can obtain the best action by computing GreedyV(s) =
argmaxa[

∑r
j=1 Rules[ra

j](s) + γ
∑k

i=1 wiRules[ga
i](s)]. Both ulp and unatlp in-

stances use GreedyV(s) combined with ε-greedy as exploration policy, which ex-
ecutes the best action most of the time, and, with a small probability ε, selects
uniformly at random an action. When different actions are considered as best,
one of them is selected uniformly at random.

The lp based method, as described in section 2.1, uses rule-based represen-
tations to exploit context-specific structure whereas both ulp and unatlp use
tree representations of cpds. Nevertheless, from Tree[P](X ′|s), we can build the
corresponding rule-based representation Rules[P](X ′|s) by composing the set of
probability rules such that: Rules[P](X ′|s) = {|ci ∧ X ′ = x : pi| such that x ∈
Dom(X), pi(X ′ = x|s) �= 0, ∀li ∈ Tree[P](X ′|s)} with ci the context of the leaf li
and pi the probability P (X ′ = x|s) in li. A similar conversion is used to obtain
rule-based value functions from decision trees.

By using such conversions, the fmdp incrementally learned may be used with
linear programming based planning method. We propose, in Figure 3, an incre-
mental planning algorithm able to exploit the additive structure of a problem
for both ulp and unatlp.

The main idea is to re-use the previous solution of the lp when it is available
and to avoid to solve the full lp at each time step. First, the Plan(Ft,Rules[Vt−1])
algorithm checks if the structure of the fmdp has changed (such information is

22 T. Degris, O. Sigaud, and P.-H. Wuillemin

Input: Ft, Rules[Vt−1] Output: Rules[Vt], {Rules[QVt
a], ∀a ∈ A}, Parameters:

TP , TM , TMIN

1. If (Structure of Ft 	= Structure of Ft−1) then:
(a) lastModif ← t
(b) Reinitialize the solution of the last linear program

2. If ((t−lastModif > TM) or (t−lastPlanning < TP)) and (t−lastPlanning > TMIN)
then:
(a) lastPlanning ← t
(b) {Rules[Vt], {Rules[QVt

a], ∀a ∈ A}} ← FactoredALP(Ft) using the solution of
the last linear program if it has not been reinitialized.

else: {Rules[Vt], {Rules[QVt
a],∀a ∈ A}} ← {Rules[Vt−1], {Rules[QVt−1

a], ∀a ∈ A}}
3. Return Rules[Vt] and {Rules[QVt

a],∀a ∈ A}

Fig. 3. The Plan(Ft, Rules[Vt−1]) algorithm in ulp and unatlp instances of sdyna

maintained by the UpdateTree algorithm for each tree of the fmdp). When the
structure does not change, then the constraints of the lp have the same structure
using the same free variables. Consequently, we use the solution of the last linear
program as a feasible solution (step 2b).

When the structure has changed, then we cannot re-use the solution of the last
linear program which is reinitialized (step 1). Then, during step 2, if the structure
has not changed for TM time step, or if the last time a linear program has been
solved is under TP and over TMIN , then the current solution is updated. When
the solution of the linear program has not been updated, then the algorithm
returns the last computed solution.

Note that to use the representation of the transition function of unatlp,
an additional step is required: it is necessary to build the cpd Tree[P a

Xi
] for

each action a from the cpd Tree[PXi]. If the action is not tested in Tree[PXi],
then Tree[P a

Xi
] = Tree[PXi] for all a, else Tree[P a

Xi
] is extracted from Tree[PXi]

by replacing each decision node testing the action in Tree[PXi] by the sub-tree
corresponding to a.

4 Results

We now present an empirical evaluation of both ulp and unatlp. We use the
SysAdmin benchmark problem, strictly following the specification given in [5]
using the unidirectional ring network architecture with N = 40 machines. This
problem exhibits a very symmetric model and has been used by [5] to show
the performance of FactoredALP. But, unlike the results presented below, the
structure of the model was assumed to be fully known. Moreover, [3,4,5] show
that spiti is unsuitable for this problem because of the decision trees used to
represent the reward and value functions.

Exploiting Additive Structure in Factored MDPs for Reinforcement Learning 23

Fig. 4. Discounted reward obtained on the SysAdmin problem. Both ulp and unatlp
are able to improve their policy, despite the large size of the problem. Error bars are
present, but hardly visible because of a very low standard deviation.

The size of the problem is 240 × 41 ≈ 4 · 1013 state/action pairs. A each time
step, a SysAdmin may go to one machine to reboot it, making it work for the next
time step with a high probability. The SysAdmin receives a reward of 1 for each
running machine (except for one machine for which it receives 2 to introduce an
asymmetry in the problem). We use N basis functions hi corresponding to each
machine represented by the Xi variable and defined such as {|Xi−1 = 0 ∧ Xi =
0 : 0.05|, |Xi−1 = 1∧Xi = 0 : 0.09|, |Xi−1 = 0∧Xi = 1 : 0.5|, |Xi−1 = 1∧Xi = 1 : 0.9|}
and a constant basis function.

We use glpsol1 as lp solver, ε = 0.1 in ε-greedy exploration policy, a dis-
count factor γ = 0.99, τχ2 = 30 in the UpdateTree induction tree algorithm and
TM = 100, TP = 1500 and TMIN = 50 in the Plan algorithm (Figure 3). We
ran 10 experiments of 20,000 time steps. We use the tree induction algorithm
id4 [13]. For implementation reasons, the backprojections ga

i (s) are computed
using decision trees as representations [3]. We refer to the respective papers for
respective descriptions. Moreover, we use the least-square criterion [14] to learn
reward functions in the UpdateTree algorithm. We ran two more agents, noted
random and optimal, executing at each time step, respectively, a random ac-
tion and the best action. The policy of optimal has been computed off-line,
using FactoredALP with the same basis functions as defined below.

Figure 4 shows the discounted reward, defined as Rdisc
t = rt + γRdisc

t−1 with
rt the reward received by the agent, obtained by each agent over the time (in
time steps). Both ulp and unatlp are able to substantially improve their pol-
icy, compared to random. Moreover, unatlp improves fairly quickly its policy
compared to ulp and considering the size and the stochasticity of the problem.

1 http://www.gnu.org/software/glpk/glpk.html

24 T. Degris, O. Sigaud, and P.-H. Wuillemin

Fig. 5. Size of the transition function of the fmdp learned in ulp and unatlp. Erros
bars are present, but hardly visible because of a very low standard deviation.

Figure 5 compares the different size of the transition function (in nodes, in-
cluding decision nodes and leaves) learned by ulp and unatlp. Both build a
transition function with a similar size of approximately 4500 nodes (compared
to the size of 41 × 40 × 7 = 11480 nodes of the full transition function with
perfect knowledge using the ulp representation). We observe that, for a similar
size, unatlp obtains better results than ulp. Moreover, the transition function
built by unatlp grows quicker than the transition function in ulp.

5 Discussion

These results show that ulp and unatlp are able to quickly learn an accurate
fmdp representing the rl problem to solve with few assumptions on this prob-
lem. They are able to exploit the additive structure of a problem even when
its structure is not known in advance. Thus, by combining lp based planning
methods with supervised learning methods such as decision tree induction, ulp
and unatlp are able to address very large problems by exploiting a strong gen-
eralisation property. Note however that the size of the model stabilizes in both
cases below the size of the perfect model, which suggests that the perfect rep-
resentation will not be learned. This is mainly due to the ε-greedy exploration
policy we use, which drives the agent to explore only paths near the greedy pol-
icy. However, despite an imperfect representation, these results clearly show that
the policy is still improved. Including better exploration policy than ε-greedy is
still work in progress.

Moreover, these results illustrate the difference between representations of
the transition function in ulp and unatlp. Figure 4 shows that unatlp learns

Exploiting Additive Structure in Factored MDPs for Reinforcement Learning 25

quicker than ulp. The main reason is that new examples only update the cpd
of the last action executed in ulp, whereas they update all the trees of the
transition function in unatlp. [12] suggests that the second representation may
be more compact when the value of a variable persists for all actions. However,
such a property could not be observed in this problem because each variable
depends on one action. Despite the fact that the ulp representation is usually
used in fmdp planning algorithms, these results suggest that the representation
used in unatlp is an interesting alternative to solve rl problems.

Future works include a method for building automatically a good set of basis
functions, such as the work of [15]. To our knowledge, ulp and unatlp are the
first algorithms to learn and to exploit a fmdp with a factored transition function
and an additively decomposed reward function. Such fmdp can directly be used
to construct a set of localized basis functions adapted to fmdp planning methods.
Thus, such approach would be very promising, combining the generality of the
representations used in ulp and unatlp with the automation of spiti to solve
large rl problems.

Our first contribution in this paper was to show that lp planning methods
may be combined with decision tree induction to address very large rl problems,
exploiting additive structure, even when the structure is unknown. Our second
contribution is to show that a different representation of the transition function
in fmdps may speed up the learning process, particularly in large rl problems,
with no loss on the size of the transition function. To conclude, approaches such
as ulp and unatlp can address rl problems that were out of reach with previous
model based methods, as far as no information at all about the structure of the
problem is given to the system.

References

1. Boutilier, C., Dearden, R., Goldszmidt, M.: Exploiting Structure in Policy Con-
struction. In: Proceedings of the 14th International Joint Conference on Artificial
Intelligence, pp. 1104–1111 (1995)

2. Dean, T., Kanazawa, K.: A Model for Reasoning about Persistence and Causation.
Computational Intelligence 5, 142–150 (1989)

3. Boutilier, C., Dearden, R., Goldszmidt, M.: Stochastic Dynamic Programming with
Factored Representations. Artificial Intelligence 121(1), 49–107 (2000)

4. Hoey, J., St-Aubin, R., Hu, A., Boutilier, C.: SPUDD: Stochastic Planning using
Decision Diagrams. In: Proceedings of the 15th Conference on UAI, pp. 279–288.
Morgan Kaufmann, San Francisco (1999)

5. Guestrin, C., Koller, D., Parr, R., Venkataraman, S.: Efficient Solution Algorithms
for Factored MDPs. Journal of Artificial Intelligence Research 19, 399–468 (2003)

6. Degris, T., Sigaud, O., Wuillemin, P.H.: Learning the Structure of Factored Markov
Decision Processes in Reinforcement Learning Problems. In: Proceedings of the
23rd ICML, pp. 257–264 (2006)

7. Manne, A.S.: Linear Programming and Sequential Decisions. Cowles Foundation
for Research in Economics at Yale University (1960)

8. Schweitzer, P., Seidmann, A.: Generalized Polynomial Approximations in Marko-
vian Decision Processes. Journal of Mathematical Analysis and Applications 110,
568–582 (1985)

26 T. Degris, O. Sigaud, and P.-H. Wuillemin

9. Koller, D., Parr, R.: Computing Factored Value Functions for Policies in Struc-
tured MDPs. In: Proceedings 16th International Joint Conference on Artificial
Intelligence, pp. 1332–1339 (1999)

10. Zhang, T., Poole, D.: On the Role of Context-specific Independence in Probabilistic
Reasoning. In: Proceedings of the 16th International Joint Conference on Artificial
Intelligence, pp. 1288–1293 (1999)

11. Degris, T., Sigaud, O., Wuillemin, P.H.: Chi-square Tests Driven Method for Learn-
ing the Structure of Factored MDPs. In: Proceedings of the 22nd Conference on
UAI, pp. 122–129 (2006)

12. Boutilier, C., Goldszmidt, M.: The Frame Problem and Bayesian Network Action
Representations. In: Proceedings of the Eleventh Biennial Canadian Conference on
Artificial Intelligence, pp. 69–83 (1996)

13. Schlimmer, J., Fisher, D.: A Case Study of Incremental Concept Induction. In:
Proceedings of the Fifth National Conference on Artificial Intelligence, pp. 496–
501 (1986)

14. Breiman, B., Breiman, L.: Classification and Regression Trees. Chapman &
Hall/CRC, Boca Raton (1984)

15. Kveton, B., Hauskrecht, M.: Learning Basis Functions in Hybrid Domains. In:
Proceedings of the 21st National Conference on Artificial Intelligence, pp. 1161–
1166 (2006)

Algorithms and Bounds for
Rollout Sampling Approximate Policy Iteration�

Christos Dimitrakakis1 and Michail G. Lagoudakis2

1 Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
dimitrak@science.uva.nl

2 Department of ECE, Technical University of Crete, Chania 73100, Greece
lagoudakis@intelligence.tuc.gr

Abstract. Several approximate policy iteration schemes without value
functions, which focus on policy representation using classifiers and ad-
dress policy learning as a supervised learning problem, have been pro-
posed recently. Finding good policies with such methods requires not
only an appropriate classifier, but also reliable examples of best actions,
covering the state space sufficiently. Up to this time, little work has been
done on appropriate covering schemes and on methods for reducing the
sample complexity of such methods, especially in continuous state spaces.
This paper focuses on the simplest possible covering scheme (a discretized
grid over the state space) and performs a sample-complexity comparison
between the simplest (and previously commonly used) rollout sampling
allocation strategy, which allocates samples equally at each state under
consideration, and an almost as simple method, which allocates samples
only as needed and requires significantly fewer samples.

1 Introduction

Supervised and reinforcement learning are two well-known learning paradigms,
which have been researched mostly independently. Recent studies have inves-
tigated using mature supervised learning methods for reinforcement learning
[6, 7, 9, 10]. Initial results have shown that policies can be approximately rep-
resented using multi-class classifiers and therefore it is possible to incorporate
classification algorithms within the inner loops of several reinforcement learning
algorithms [6, 7, 9]. This viewpoint allows the quantification of the performance
of reinforcement learning algorithms in terms of the performance of classifica-
tion algorithms [10]. While a variety of promising combinations become possible
through this synergy, heretofore there have been limited practical results and
widely-applicable algorithms.

Herein we consider approximate policy iteration algorithms, such as those
proposed by Lagoudakis and Parr [9] as well as Fern et al. [6, 7], which do not
explicitly represent a value function. At each iteration, a new policy/classifier is

� This project was partially supported by the ICIS-IAS project and the Marie Curie
International Reintegration Grant MCIRG-CT-2006-044980 awarded to Michail G.
Lagoudakis within the 6th European Framework Programme.

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 27–40, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

28 C. Dimitrakakis and M.G. Lagoudakis

produced using training data obtained through extensive simulation (rollouts) of
the previous policy on a generative model of the process. These rollouts aim at
identifying better action choices over a subset of states in order to form a set of
data for training the classifier representing the improved policy. The major lim-
itation of these algorithms, as also indicated by Lagoudakis and Parr [9], is the
large amount of rollout sampling employed at each sampled state. It is hinted,
however, that great improvement could be achieved with sophisticated manage-
ment of sampling. We have verified this intuition in a companion paper [4] that
experimentally compared the original approach of uninformed uniform sampling
with various intelligent sampling techniques. That paper employed heuristic vari-
ants of well-known algorithms for bandit problems, such as Upper Confidence
Bounds [1] and Successive Elimination [5], for the purpose of managing rollouts
(choosing which state to sample from is similar to choosing which lever to pull
on a bandit machine). It should be noted, however, that despite the similarity,
rollout management has substantial differences to standard bandit problems and
thus general bandits results are not directly applicable to our case.

The current paper aims to offer a first theoretical insight into the rollout
sampling problem. This is done through the analysis of the two simplest sample
allocation methods described in [4]. Firstly, the old method that simply allocates
an equal, fixed number of samples at each state and secondly the slightly more
sophisticated method of progressively sampling all states where we are not yet
reasonably certain of which the policy-improving action would be.

The remainder of the paper is organised as follows. Section 2 provides the nec-
essary background, Section 4 introduces the proposed algorithms, and Section 3
discusses related work. Section 5, which contains an analysis of the proposed
algorithms, is the main technical contribution.

2 Preliminaries

A Markov Decision Process (MDP) is a 6-tuple (S,A, P,R, γ,D), where S is the
state space of the process, A is a finite set of actions, P is a Markovian transition
model (P (s, a, s′) denotes the probability of a transition to state s′ when taking
action a in state s), R is a reward function (R(s, a) is the expected reward for
taking action a in state s), γ ∈ (0, 1] is the discount factor for future rewards,
and D is the initial state distribution. A deterministic policy π for an MDP is
a mapping π : S �→ A from states to actions; π(s) denotes the action choice at
state s. The value V π(s) of a state s under a policy π is the expected, total,
discounted reward when the process begins in state s and all decisions at all
steps are made according to π:

V π(s) = E

[∞∑
t=0

γtR
(
st, π(st)

)
|s0 = s, st ∼ P

]
. (1)

The goal of the decision maker is to find an optimal policy π∗ that maximises
the expected, total, discounted reward from all states; in other words, V π∗

(s) ≥
V π(s) for all policies π and all states s ∈ S.

Algorithms and Bounds for Rollout Sampling API 29

Policy iteration (PI) is an efficient method for deriving an optimal policy.
It generates a sequence π1, π2, ..., πk of gradually improving policies, which
terminates when there is no change in the policy (πk = πk−1); πk is an opti-
mal policy. Improvement is achieved by computing V πi analytically (solving the
linear Bellman equations) and the action values

Qπi(s, a) = R(s, a) + γ
∑
s′
P (s, a, s′)V πi(s′) ,

and then determining the improved policy as πi+1(s) = argmaxaQ
πi(s, a).

Policy iteration typically terminates in a small number of steps. However, it
relies on knowledge of the full MDP model, exact computation and representa-
tion of the value function of each policy, and exact representation of each policy.
Approximate policy iteration (API) is a family of methods, which have been
suggested to address the “curse of dimensionality”, that is, the huge growth in
complexity as the problem grows. In API, value functions and policies are rep-
resented approximately in some compact form, but the iterative improvement
process remains the same. Apparently, the guarantees for monotonic improve-
ment, optimality, and convergence are compromised. API may never converge,
however in practice it reaches good policies in only a few iterations.

2.1 Rollout Estimates

Typically, API employs some representation of the MDP model to compute the
value function and derive the improved policy. On the other hand, the Monte-
Carlo estimation technique of rollouts provides a way of accurately estimating
Qπ at any given state-action pair (s, a) without requiring an explicit MDP model
or representation of the value function. Instead, a generative model of the process
(a simulator) is used; such a model takes a state-action pair (s, a) and returns a
reward r and a next state s′ sampled from R(s, a) and P (s, a, s′) respectively.

A rollout for the state-action pair (s, a) amounts to simulating a single trajec-
tory of the process beginning from state s, choosing action a for the first step,
and choosing actions according to the policy π thereafter up to a certain horizon
T . If we denote the sequence of collected rewards during the i-th simulated tra-
jectory as r(i)t , t = 0, 1, 2, . . . , T − 1, then the rollout estimate Q̂π,T

K (s, a) of the
true state-action value function Qπ(s, a) is the observed total discounted reward,
averaged over all K trajectories:

Q̂π,T
K (s, a) � 1

K

K∑
i=1

Q̃π,T
(i) (s, a) , Q̃π,T

(i) (s, a) �
T−1∑
t=0

γtr
(i)
t .

Similarly, we define Qπ,T (s, a) = E
(∑T−1

t=0 γt−1rt
∣∣a0=a, s0=s, at ∼ π, st ∼ P

)
to be the actual state-action value function up to horizon T . As will be seen
later, with a sufficient amount of rollouts and a long horizon T , we can create
an improved policy π′ from π at any state s, without requiring a model of the
MDP.

30 C. Dimitrakakis and M.G. Lagoudakis

3 Related Work

Rollout estimates have been used in the Rollout Classification Policy Iteration
(RCPI) algorithm [9], which has yielded promising results in several learning
domains. However, as stated therein, it is sensitive to the distribution of training
states over the state space. For this reason it is suggested to draw states from the
discounted future state distribution of the improved policy. This tricky-to-sample
distribution, also used by Fern et al. [7], yields better results. One explanation
advanced in those studies is the reduction of the potential mismatch between
the training and testing distributions of the classifier.

However, in both cases, and irrespectively of the sampling distribution, the
main drawback is the excessive computational cost due to the need for lengthy
and repeated rollouts to reach a good level of accuracy in the estimation of the
value function. In our preliminary experiments with RCPI, it has been observed
that most of the effort is spent where the action value differences are either
non-existent, or so fine that they require a prohibitive number of rollouts to
identify them. In this paper, we propose and analyse sampling methods to remove
this performance bottle-neck. By restricting the sampling distribution to the
case of a uniform grid, we compare the fixed allocation algorithm (Fixed) [7,
9], whereby a large fixed amount of rollouts is used for estimating the action
values in each training state, to a simple incremental sampling scheme based on
counting (Count), where the amount of rollouts in each training state varies. We
then derive complexity bounds, which show a clear improvement using Count
that depends only on the structure of differential value functions.

We note that Fern et al. [7] presented a related analysis. While they go into
considerably more depth with respect to the classifier, their results are not ap-
plicable to our framework. This is because they assume that there exists some
real number ∆∗ > 0 which lower-bounds the amount by which the value of an
optimal action(s) under any policy exceeds the value of the nearest sub-optimal
action in any state s. Furthermore, the algorithm they analyse uses a fixed num-
ber of rollouts at each sampled state. For a given minimum ∆∗ value over all
states, they derive the necessary number of rollouts per state to guarantee an im-
provement step with high probability, but the algorithm offers no practical way
to guarantee a high probability improvement. We instead derive error bounds for
the fixed and counting allocation algorithms. Additionally, we are considering
continuous, rather than discrete, state spaces. Because of this, technically our
analysis is much more closely related to that of Auer et al. [2].

4 Algorithms to Reduce Sampling Cost

The total sampling cost depends on the balance between the number of states
sampled and the number of samples per state. In the fixed allocation scheme
[7, 9], the same number of K|A| rollouts is allocated to each state in a subset
S of states and all K rollouts dedicated to a single action are exhausted before
moving on to the next action. Intuitively, if the desired outcome (superiority of

Algorithms and Bounds for Rollout Sampling API 31

Algorithm 1. SampleState

Input: state s, policy π, horizon T , discount factor γ
for (each a ∈ A) do

(s′, r) = Simulate(s, a)
Q̃π(s, a) = r
x = s′

for t = 1 to T − 1 do
(x′, r) = Simulate(x,π(x))
Q̃π(s, a) = Q̃π(s, a) + γtr
x = x′

end for
end for
return Q̃π

some action) in some state can be confidently determined early, there is no need
to exhaust all K|A| rollouts available in that state; the training data could be
stored and the state could be removed from the pool without further examina-
tion. Similarly, if we can confidently determine that all actions are indifferent
in some state, we can simply reject it without wasting any more rollouts; such
rejected states could be replaced by fresh ones which might yield meaningful
results. These ideas lead to the following question: can we examine all states in
S collectively in some interleaved manner by selecting each time a single state
to focus on and allocating rollouts only as needed?

Selecting states from the state pool could be viewed as a problem akin to a
multi-armed bandit problem, where each state corresponds to an arm. Pulling a
lever corresponds to sampling the corresponding state once. By sampling a state
we mean that we perform a single rollout for each action in that state as shown
in Algorithm 1. This is the minimum amount of information we can request
from a single state.1 Thus, the problem is transformed to a variant of the classic
multi-armed bandit problem. Several methods have been proposed for various
versions of this problem, which could potentially be used in this context. In this
paper, apart from the fixed allocation scheme presented above, we also examine
a simple counting scheme.

The algorithms presented here maintain an empirical estimate ∆̂π(s) of the
marginal difference of the apparently maximal and the second best of actions.
This can be represented by the marginal difference in Qπ values in state s,
defined as

∆π(s) = Qπ(s, a∗s,π)− max
a�=a∗

s,π

Qπ(s, a) ,

where a∗s,π is the action that maximises Qπ in state s:

a∗s,π = arg max
a∈A

Qπ(s, a) .

1 It is possible to also manage sampling of the actions, but herein we are only concerned
with the effort saved by managing state sampling.

32 C. Dimitrakakis and M.G. Lagoudakis

The case of multiple equivalent maximising actions can be easily handled by
generalising to sets of actions in the manner of Fern et al. [7], in particular

A∗
s,π � {a ∈ A : Qπ(s, a) ≥ Qπ(s, a′), ∀a′ ∈ A}

V π
∗ (s) = max

a∈A
Qπ(s, a)

∆π(s) =
{
V π
∗ (s)−maxa/∈A∗

s,π
Qπ(s, a), A∗

s,π ⊂ A
0, A∗

s,π = A

However, here we discuss only the single best action case to simplify the exposi-
tion. The estimate ∆̂π(s) is defined using the empirical value function Q̂π(s, a).

5 Complexity of Sampling-Based Policy Improvement

Rollout algorithms can be used for policy improvement under certain condi-
tions. Bertsekas [3] gives several theorems for policy iteration using rollouts and
an approximate value function that satisfies a consistency property. Specifically,
Proposition 3.1. therein states that the one-step look-ahead policy π′ computed
from the approximate value function V̂ π, has a value function which is bet-
ter than the current approximation V̂ π , if maxa∈A E[rt+1 + γV̂ π(st+1)|π′, st =
s, at = a] ≥ V̂ π(s) for all s ∈ S. It is easy to see that an approximate value
function that uses only sampled trajectories from a fixed policy π satisfies this
property if we have an adequate number of samples. While this assures us that
we can perform rollouts at any state in order to improve upon the given policy,
it does not lend itself directly to policy iteration. That is, with no way to com-
pactly represent the resulting rollout policy we would be limited to performing
deeper and deeper tree searches in rollouts.

In this section we shall give conditions that allow policy iteration through
compact representation of rollout policies via a grid and a finite number of
sampled states and sample trajectories with a finite horizon. Following this, we
will analyse the complexity of the fixed sampling allocation scheme employed in
[7, 9] and compare it with an oracle that needs only one sample to determine
a∗s,π for any s ∈ S and a simple counting scheme.

5.1 Sufficient Conditions

Assumption 1 (Bounded finite-dimension state space). The state space
S is a compact subset of [0, 1]d.

This assumption can be generalised to other bounded state spaces easily. How-
ever, it is necessary to have this assumption in order to be able to place some
minimal constraints on the search.

Assumption 2 (Bounded rewards). R(s, a) ∈ [0, 1] for all a∈A, s∈S.

This assumption bounds the reward function and can also be generalised easily
to other bounding intervals.

Algorithms and Bounds for Rollout Sampling API 33

Assumption 3 (Hölder Continuity). For any policy π ∈ Π, there exists
L,α ∈ [0, 1], such that for all states s, s′ ∈ S

|Qπ(s, a)−Qπ(s′, a)| ≤ L

2
‖s− s′‖α

∞ .

This assumption ensures that the value function Qπ is fairly smooth. It triv-
ially follows in conjunction with Assumptions 1 and 2 that Qπ, ∆π are bounded
everywhere in S if they are bounded for at least one s ∈ S. Furthermore, the
following holds:

Remark 1. Given that, by definition, Qπ(s, a∗s,π) ≥ ∆π(s) +Qπ(s, a) for all a �=
a∗s,π, it follows from Assumption 3 that

Qπ(s′, a∗s,π) ≥ Qπ(s′, a) ,

for all s′ ∈ S such that ‖s− s′‖∞ ≤ α
√
∆π(s)/L.

This remark implies that the best action in some state s according to Qπ will also
be the best action in a neighbourhood of states around s. This is a reasonable
condition as there would be no chance of obtaining a reasonable estimate of the
best action in any region from a single point, if Qπ could change arbitrarily fast.
We assert that MDPs with a similar smoothness property on their transition
distribution will also satisfy this assumption.

Finally, we need an assumption that limits the total number of rollouts that
we need to take, as states with a smaller ∆π will need more rollouts.

Assumption 4 (Measure). If µ {S} denotes the Lebesgue measure of set S,
then, for any π ∈ Π, there exist M,β > 0 such that µ {s ∈ S : ∆π(s) < ε} < Mεβ

for all ε > 0.

This assumption effectively limits the amount of times value-function changes
lead to best-action changes, as well as the ratio of states where the action val-
ues are close. This assumption, together with the Hölder continuity assumption,
imposes a certain structure on the space of value functions. We are thus guar-
anteed that the value function of any policy results in an improved policy which
is not arbitrarily complex. This in turn, implies that an optimal policy cannot
be arbitrarily complex either.

A final difficulty is determining whether there exists some sufficient horizon
T0 beyond which it is unnecessary to go. Unfortunately, even though for any
state s for which Qπ(s, a′) > Qπ(s, a), there exists T0(s) such that Qπ,T (s, a′) >
Qπ,T (s, a) for all T > To(s), T0 grows without bound as we approach a point
where the best action changes. However, by selecting a fixed, sufficiently large
rollout horizon, we can still behave optimally with respect to the true value
function in a compact subset of S.

Lemma 1. For any policy π ∈ Π, ε > 0, there exists a finite Tε > 0 and a
compact subset Sε ⊂ S such that

Qπ,T (s, a∗s,π) ≥ Qπ,T (s, a) ∀a ∈ A, s ∈ S, T > Tε

where a∗s,π ∈ A is such that Qπ(s, a∗s,π) ≥ Qπ(s, a) for all a ∈ A.

34 C. Dimitrakakis and M.G. Lagoudakis

Proof. From the above assumptions it follows directly that for any ε > 0, there
exists a compact set of states Sε ⊂ S such that Qπ(s, a∗s,π) ≥ Qπ(s, a′) + ε

for all s ∈ Sε, with a′ = arg maxa�=a∗
s,π
Qπ(s, a). Now let xT � Qπ,T (s, a∗s,π) −

Qπ,T (s, a′). Then, x∞ � limT→∞ xT ≥ ε. For any s ∈ Sε the limit exists and
thus by definition ∃Tε(s) such that xTε > 0 for all T > Tε. Since Sε is compact,
Tε � sups∈Sε

Tε(s) also exists.2 ��

This ensures that we can identify the best action within ε, using a finite rollout
horizon, in most of S. Moreover, µ {Sε} ≥ 1−M2εβ from Assumption 4.

In standard policy iteration, the improved policy π′ over π has the property
that the improved action in any state is the action with the highest Qπ value
in that state. However, in rollout-based policy iteration, we may only guarantee
being within ε > 0 of the maximally improved policy.

Definition 1 (ε-improved policy). An ε-improved policy π′ derived from π
satisfies

max
a∈A

Qπ(s, a)− ε ≤ V π′
(s), (2)

Such a policy will be said to be improving in S if V π(s) ≤ V π′
(s) for all s ∈ S.

The measure of states for which there can not be improvement is limited by
Assumption 4. Finding an improved π′ for the whole of S is in fact not possible
in finite time, since this requires determining the boundaries in S at which the
best action changes. 3

In all cases, we shall attempt to find the improving action a∗s,π at each state
s on a uniform grid of n states, with the next policy π′(s′) taking the estimated
best action â∗s,π for the state s closest to s′, i.e. it is a nearest-neighbour classifier.

In the remainder, we derive complexity bounds for achieving an ε-improved
policy π′ from π with probability at least 1− δ. We shall always assume that we
are using a sufficiently deep rollout to cover Sε and only consider the number
of rollouts performed. First, we shall derive the number of states we need to
sample from in order to guarantee an ε-improved policy, under the assumption
that at each state we have an oracle which can give us the exact Qπ values for
each state we examine. Later, we shall consider sample complexity bounds for
the case where we do not have an oracle, but use empirical estimates Q̂π,T at
each state.

5.2 The Oracle Algorithm

Let B(s, ρ) denote the infinity-norm sphere of radius ρ centred in s and consider
Alg. 2 (Oracle) that can instantly obtain the state-action value function for
any point in S. The algorithm creates a uniform grid of n states, such that the
distance between adjacent states is 2ρ = 1

n1/d – and so can cover S with spheres
B(s, ρ). Due to Assumption 3, the error in the action values of any state in sphere
2 For a discount factor γ < 1 we can simply bound Tε with log[ε(1 − γ)]/ log(γ).
3 To see this, consider S � [0, 1], with some s∗ : R(s, a1) ≥ R(s, a2) ∀s ≥ s∗ and

R(s, a1) < R(s, a2) ∀s < s∗. Finding s∗ requires a binary search, at best.

Algorithms and Bounds for Rollout Sampling API 35

Algorithm 2. Oracle

Input: n, π
Set S to a uniform grid of n states in S .
for s ∈ S do

â∗
s,π = a∗

s,π

end for
return Â∗

S,π � {â∗
s,π : s ∈ S}

B(s, ρ) of state s will be bounded by L
(1

2n1/d

)α. Thus, the resulting policy will
be L

(1
2n1/d

)α-improved, i.e. this will be the maximum regret it will suffer over
the maximally improved policy.

To bound this regret by ε, it is sufficient to have n =
(

1
2

α

√
L
ε

)d

states in the
grid. The following proposition follows directly.

Proposition 1. Algorithm 2 results in regret ε for n = O
(
Ld/α

[
2ε1/α

]−d
)
.

Furthermore, as for all s such that∆π(s) > Lρα, a∗s,π will be the improved action

in all of B(s, ρ), then π′ will be improving in S with µ {S} ≥ 1−MLβ
(1

2n1/d

)αβ .
Both the regret and the lack of complete coverage are due to the fact that we
cannot estimate the best-action boundaries with arbitrary precision in finite
time. When using rollout sampling, however, even if we restrict ourselves to ε
improvement, we may still make an error due to both the limited number of
rollouts and the finite horizon of the trajectories. In the remainder, we shall
derives error bounds for two practical algorithms that employ a fixed grid with
a finite number of T -horizon rollouts.

5.3 Error Bounds for States

When we estimate the value function at each s ∈ S using rollouts there is a
probability that the estimated best action â∗s,π is not in fact the best action.
For any given state under consideration, we can apply the following well-known
lemma to obtain a bound on this error probability.

Lemma 2 (Hoeffding inequality). Let X be a random variable in [b, b+ Z]
with X̄ � E[X], observed values X1, . . . , Xn of X, and X̂n � 1

n

∑n
i=1Xi. Then,

P(X̂n ≥ X̄ + ε) = P(X̂n ≤ X̄ + ε) ≤ exp
(
−2nε2/Z2

)
for any ε > 0.

Without loss of generality, consider two random variables X,Y ∈ [0, 1], with
empirical means X̂n, Ŷn and empirical difference ∆̂n � X̂n − Ŷn > 0. Their
means and difference will be denoted as X̄, Ȳ , ∆̄ � X̄ − Ȳ respectively.

Note that if X̄ > Ȳ , X̂n > X̄ − ∆̄/2 and Ŷn < Ȳ + ∆̄/2 then necessarily
X̂n > Ŷn, so P(X̂n > Ŷn|X̄ > Ȳ) ≥ P(X̂n > X̄ − ∆̄/2 ∧ Ŷn < Ȳ + ∆̂n/2). The
converse is

P
(
X̂n < Ŷn | X̄ > Ȳ

)
≤ P

(
X̂n < X̄ − ∆̄/2 ∨ Ŷn > Ȳ + ∆̄/2

)
(3a)

36 C. Dimitrakakis and M.G. Lagoudakis

Algorithm 3. Fixed

Input: n, π, c, T , δ
Set S to a uniform grid of n states in S .
for s ∈ S do

Estimate Q̂π,T
c (s, a) for all a.

if ∆̂π(s) > Z
q

2 log(2n|A|/δ)
c

then

â∗
s,π = arg max Q̂π

else
â∗

s,π = π(s)
end if

end for
return Â∗

S,π � {â∗
s,π : s ∈ S}

≤ P
(
X̂n < X̄ − ∆̄/2

)
+ P

(
Ŷn > Ȳ + ∆̄/2

)
(3b)

≤ 2 exp
(
−n

2
∆̄2

)
. (3c)

Now, consider â∗s,π such that Q̂π(s, â∗s,π) ≥ Q̂π(s, a) for all a. Setting X̂n =
Z−1Q̂π(s, â∗s,π) and Ŷn = Z−1Q̂π(s, a), where Z is a normalising constant such
that Q ∈ [b, b+1], we can apply (3). Note that the bound is largest for the action
a′ with value closest to a∗s,π, for which it holds that Qπ(s, a∗s,π) − Qπ(s, a′) =
∆π(s). Using this fact and an application of the union bound, we conclude that
for any state s, from which we have taken c(s) samples, it holds that:

P[∃â∗s,π �= a∗s,π : Q̂π(s, â∗s,π) ≥ Q̂π(s, a)] ≤ 2|A| exp
(
− c(s)

2Z2∆
π(s)2

)
. (4)

5.4 Uniform Sampling: The Fixed Algorithm

As we have seen in the previous section, if we employ a grid of n states, covering
S with spheres B(s, ρ), where ρ = 1

2n1/d , and taking action a∗s,π in each sphere
centred in s, then the resulting policy π′ is only guaranteed to be improved within
ε of the optimal improvement from π, where ε = Lρα. Now, we examine the case
where, instead of obtaining the true a∗s,π, we have an estimate â∗s,π arising from c
samples from each action in each state, for a total of cn|A| samples. Algorithm 3
accepts (i.e. it sets â∗s,π to be the empirically highest value action in that state)
for all states satisfying:

∆̂π(s) ≥ Z

√
2 log(2n|A|/δ)

c
. (5)

The condition ensures that the probability that Qπ(s, â∗s,π) < Qπ(s, a∗s,π), mean-
ing the optimally improving action is not â∗s,π, at any state is at most δ. This

Algorithms and Bounds for Rollout Sampling API 37

can easily be seen by substituting the right hand side of (5) for ε in (4). As
∆π(s) > 0, this results in an error probability of a single state smaller than δ/n
and we can use a union bound to obtain an error probability of δ for each policy
improvement step.

For each state s ∈ S that the algorithm considers, the following two cases are
of interest: (a) ∆π(s) < ε, meaning that even when we have correctly identified
a∗s,π, we are still not improving over all of B(s, ρ) and (b) ∆π(s) ≥ ε.

While the probability of accepting the wrong action is always bounded by
δ, we must also calculate the probability that we fail to accept an action at
all, when ∆π(s) ≥ ε to estimate the expected regret. Restating our acceptance
condition as ∆̂π(s) ≥ θ, this is given by:

P[∆̂π(s) < θ] = P[∆̂π(s)−∆π(s) < θ −∆π(s)]

= P[∆π(s)− ∆̂π(s) > ∆π(s)− θ], ∆π(s) > θ. (6)

Is ∆π(s) > θ? Note that for ∆π(s) > ε, if ε > θ then so is ∆π. So, in order
to achieve total probability δ for all state-action pairs in this case, after some
calculations, we arrive at this expression for the regret

ε = max

{
L

(
1

2n1/d

)α

, Z

√
8 log(2n|A|/δ)

c

}
. (7)

By equating the two sides, we get an expression for the minimum number of
samples necessary per state:

c = 8
Z2

L2 4αn2α/d log(2n|A|/δ).

This directly allows us to state the following proposition.

Proposition 2. The sample complexity of Algorithm 3 to achieve regret at most
ε with probability at least 1− δ is O

(
ε−2Ld/α

[
2ε1/α

]−d
log 2|A|

δ Ld/α
[
2ε1/α

]−d
)
.

5.5 The Count Algorithm

The Count algorithm starts with a policy π and a set of states S0, with n = |S0|.
At each iteration k, each sample in Sk is sampled once. Once a state s ∈ Sk

contains a dominating action, it is removed from the search. So,

Sk =

{
s ∈ Sk−1 : ∆̂π(s) < Z

√
log(2n|A|/δ)

c(s)

}

Thus, the number of samples from each state is c(s) ≥ k if s ∈ Sk.
We can apply similar arguments to analyse Count, by noting that the algo-

rithm spends less time in states with higher ∆π values. The measure assumption

38 C. Dimitrakakis and M.G. Lagoudakis

Algorithm 4. Count

Input: n, π, C, T , δ
Set S0 to a uniform grid of n states in S , c1, . . . , cn = 0.
for k = 1, 2, . . . do

for s ∈ Sk do
Estimate Q̂π,T

c (s, a) for all a, increment c(s)

Sk =
n

s ∈ Sk−1 : ∆̂π(s) < Z
q

2 log(2n|A|/δ)
c(s)

o
end for
if
P

s c(s) >= C then
Break.

end if
end for

then allows us to calculate the number of states with large ∆π and thus, the
number of samples that are needed.

We have already established that there is an upper bound on the regret de-
pending on the grid resolution ε < Lρα. We proceed by forming subsets of states
Wm = {s ∈ S : ∆π(s) ∈ [2−m, 21−m)}. Note that we only need to consider
m < 1 + 1

log 1/2 (logL+ α log ρ).
Similarly to the previous algorithm, and due to our acceptance condition, for

each state s ∈ Wm, we need c(s) ≥ 22m+1Z2 log 2n|A|
δ in order to bound the

total error probability by δ. The total number of samples necessary is

Z2 log
2n|A|
δ

� 1
log 1/2 (log L+α log ρ)	∑

m=0

|Wm|22m+1.

A bound on |Wm| is required to bound this expression. Note that

µ {B(s, ρ) : ∆π(s′) < ε∀s′ ∈ B(s, ρ)} ≤ µ {s : ∆π(s) < ε} < Mεβ. (8)

It follows that |Wm| < M2β(1−m)ρ−d and consequently

∑
s∈S

c(s) = Z2 log
2n|A|
δ

� 1
log 1/2 (log L+α log ρ)	∑

m=0

M2β(1−m)ρ−d22m+1

≤M2β+12
1+ 1

log 1/2 (log L+α log ρ)

2−β 2dZ2n log
2n|A|
δ

. (9)

The above results directly in the following proposition:

Proposition 3. The sample complexity of Algorithm 4 to achieve regret at most
ε with probability at least 1− δ, is O

(
Ld/α

[
2ε1/α

]−d
log 2|A|

δ Ld/α
[
2ε1/α

]−d
)
.

We note that we are of course not able to remove the dependency on d, which
is only due to the use of a grid. Nevertheless, we obtain a reduction in sample
complexity of order ε−2 for this very simple algorithm.

Algorithms and Bounds for Rollout Sampling API 39

6 Discussion

We have derived performance pounds for approximate policy improvement with-
out a value function in continuous MDPs. We compared the usual approach of
sampling equally from a set of candidate states to the slightly more sophisti-
cated method of sampling from all candidate states in parallel, and removing a
candidate state from the set as soon as it was clear which action is best. For
the second algorithm, we find an improvement of approximately ε−2. Our re-
sults complement those of Fern et al [7] for relational Markov decision processes.
However significant amount of future work remains.

Firstly, we have assumed everywhere that T > Tε. While this may be a rel-
atively mild assumption for γ < 1, it is problematic for the undiscounted case,
as some states would require far deeper rollouts than others to achieve regret ε.
Thus, in future work we would like to examine sample complexity in terms of
the depth of rollouts as well.

Secondly, we would like to extend the algorithms to increase the number of
states that we look at: whenever V̂ π(s) ≈ V̂ π′

(s) for all s, then we could increase
the resolution. For example if,∑

s∈S

P
(
V̂ π(s) + ε < V̂ π′

(s) | V π(s) > V π′
(s)

)
< δ

then we could increase the resolution around those states with the smallest ∆π .
This would get around the problem of having to select n.

A related point that has not been addressed herein, is the choice of policy
representation. The grid-based representation probably makes poor use of the
available number of states. For the increased-resolution scheme outlined above,
a classifier such as k-nearest-neighbour could be employed. Furthermore, regu-
larised classifiers might affect a smoothing property on the resulting policy, and
allow the learning of improved policies from a set of states containing erroneous
best action choices.

As far as the state allocation algorithms are concerned, in a companion pa-
per [4], we have compared the performance of Count and Fixed with additional
allocation schemes inspired from the UCB and successive elimination algorithms.
We have found that all methods outperform Fixed in practice, sometimes by
an order of magnitude, with the UCB variants being the best overall.

For this reason, in future work we plan to perform an analysis of such algo-
rithms. A further extension to deeper searches, by for example managing the
sampling of actions within a state, could also be performed using techniques
similar to [8].

Acknowledgements. Thanks to the reviewers and to Adam Atkinson, Brendan
Barnwell, Frans Oliehoek, Ronald Ortner and D. Jacob Wildstrom for comments
and useful discussions.

40 C. Dimitrakakis and M.G. Lagoudakis

References

[1] Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine Learning Journal 47(2-3), 235–256 (2002)

[2] Auer, P., Ortner, R., Szepesvari, C.: Improved Rates for the Stochastic
Continuum-Armed Bandit Problem. In: Bshouty, N.H., Gentile, C. (eds.) COLT
2007. LNCS, vol. 4539, pp. 454–468. Springer, Heidelberg (2007)

[3] Bertsekas, D.: Dynamic programming and suboptimal control: From ADP to
MPC. Fundamental Issues in Control, European Journal of Control 11(4-5) (2005);
From 2005 CDC, Seville, Spain

[4] Dimitrakakis, C., Lagoudakis, M.: Rollout sampling approximate policy iteration.
Machine Learning 72(3) (September 2008)

[5] Even-Dar, E., Mannor, S., Mansour, Y.: Action elimination and stopping condi-
tions for the multi-armed bandit and reinforcement learning problems. Journal of
Machine Learning Research 7, 1079–1105 (2006)

[6] Fern, A., Yoon, S., Givan, R.: Approximate policy iteration with a policy language
bias. Advances in Neural Information Processing Systems 16(3) (2004)

[7] Fern, A., Yoon, S., Givan, R.: Approximate policy iteration with a policy language
bias: Solving relational Markov decision processes. Journal of Artificial Intelligence
Research 25, 75–118 (2006)

[8] Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS, vol. 4212, pp. 282–293.
Springer, Heidelberg (2006)

[9] Lagoudakis, M.G., Parr, R.: Reinforcement learning as classification: Leveraging
modern classifiers. In: Proceedings of the 20th International Conference on Ma-
chine Learning (ICML), Washington, DC, USA, pp. 424–431 (August 2003)

[10] Langford, J., Zadrozny, B.: Relating reinforcement learning performance to clas-
sification performance. In: Proceedings of the 22nd International Conference on
Machine learning (ICML), Bonn, Germany, pp. 473–480 (2005)

Efficient Reinforcement Learning in
Parameterized Models: Discrete Parameter Case

Kirill Dyagilev1, Shie Mannor2, and Nahum Shimkin1

1 Department of EE, Technion, Haifa, Israel
{kirilld@tx,shimkin@ee}.technion.ac.il

2 Department of ECE, McGill University, Montreal, Canada
shie.mannor@mcgill.ca

Abstract. We consider reinforcement learning in the parameterized
setup, where the model is known to belong to a finite set of Markov
Decision Processes (MDPs) under the discounted return criteria. We pro-
pose an on-line algorithm for learning in such parameterized models, the
Parameter Elimination (PEL) algorithm, and analyze its performance
in terms of the total mistake bound criterion. The algorithm relies on
Wald’s sequential probability ratio test to eliminate unlikely parameters,
and uses an optimistic policy for effective exploration. We establish that,
with high probability, the total mistake bound for the algorithm is linear
(up to a logarithmic term) in the size |Θ| of the parameter space, inde-
pendently of the cardinality of the state and action spaces. We further
demonstrate that much better dependence on |Θ| is possible, depending
on the specific information structure of the problem.

1 Introduction

In Reinforcement Learning (RL), an agent interacts with a partially known envi-
ronment with purpose of maximizing some numerical utility measure, based on
observations of the environment state and reward signals [13]. The environment
is often modeled as a Markov Decision Process (MDP) with finite state and
action spaces. One possible goal for the agent is to learn an (almost-)optimal
control policy as quickly as possible. Alternatively, in an on-line setting where
learning is performed during normal system operation, the agent’s goal may be to
maximize the actually obtained reward or to minimize the number of suboptimal
moves relative to the optimal policy.

A fundamental issue that greatly affects the convergence rate of RL algorithms
is the efficiency of exploration of the state and action spaces. In an on-line
setting, in particular, the agent faces the well-known exploration-exploitation
trade-off: whether to keep trying to acquire new information (explore), or to act
consistently with accumulated information to maximize reward (exploit). An
efficient solution to this trade-off is essential to obtain acceptable convergence
guarantees.

Several different measures of convergence were proposed for the on-line RL
problem. These include the number of exploratory episodes [1,6], the number

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 41–54, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

42 K. Dyagilev, S. Mannor, and N. Shimkin

of time steps the agent follows a sub-optimal action, and the number of steps
the agent spends following a non-optimal policy [4] (in general, sub-optimality
of a policy does not imply sub-optimality of a single action). We shall consider
here the latter two, and refer to them as the action-mistake count and policy-
mistake count (also known as the sample complexity of exploration), respectively.
A learning algorithm is said to be PAC (Probable Approximately Correct) if its
relevant convergence-rate metric is polynomial in the model size parameters with
high probability.

In recent years several PAC algorithms were introduced. These include the
R-max algorithm [1], further analyzed in [4], the MBIE algorithm [12] and the
Delayed Q-learning algorithm [11]. These algorithms do not use any prior knowl-
edge on the model parameters, but rather estimate empirically either the transi-
tion probabilities or directly the Q-function for all state-action pairs. As a result,
their convergence-rate metrics are at least proportional to the cardinality of the
state and action spaces, which may not be acceptable for large problems. Possible
approaches to handle such problems include various approximation schemes, and
the use of prior knowledge about the system to enhance learning performance.

An effective use of structural knowledge about the system has been demon-
strated for factored MDPs in [5]. Here we consider the case where a param-
eterized model of the system in question is available. The potential problem
simplification offered by such models can be demonstrated through a simple
queueing example. Consider a single-server queue with buffer and server capac-
ity of 100 customers. Assume that the arrival and service processes are Poisson
processes with rate parameters λ and µ, respectively. In this model, all transi-
tion probabilities are determined by two parameters only. Therefore, although
the cardinality of the state space is 100, it is enough to estimate only two param-
eters in order to find an optimal policy. This observation turns out to be even
more acute in case of a queuing system that contains several such queues, say
N > 1. While the cardinality of the state space grows exponentially to 100N ,
which makes learning on a per-state basis infeasible, the number of parameters
associated with arrival/service processes grows linearly to 2N .

Parameterized control models, in which all model parameters are defined in
terms of a smaller parameter vector, have been extensively studied in the context
of adaptive control, and in particular stochastic adaptive control [7]. However,
the results of this research are focused mostly on asymptotic convergence results,
rather than on finite time convergence bounds. Some related recent work may
be found in [10].

Our focus in this paper is on parameterized system models with a finite pa-
rameter space. We further consider the discounted reward problem. We present
an efficient RL algorithm for this case, called the Parameter Elimination (PEL)
algorithm, and show that its total mistake bound grows linearly (up to logarith-
mic terms) in the size of parameter space, and independently of the size of the
state and action spaces.

Essentially, the PEL algorithm is based on eliminating “unlikely” parameters
from the list of plausible parameters, J , using the Sequential Probability Ratio

Efficient Reinforcement Learning in Parameterized Models 43

Test (SPRT) [14]. As for action selection, at every step t an “optimistic” param-
eter is selected from the set J . This parameter is the one that maximized the
(discounted) value function from the current state. The current action is then
selected as the optimal one for the optimistic parameter.

The current paper focuses on the case of a finite parameter set. While this case
is of interest on its own, it may also serve as an intermediate step for treating
the continuous parameter case via discretization. A detailed treatment of this
approach falls beyond the scope of the present paper.

The rest of the paper is organized as follows. In Section 2 we present the
model along with some definitions and notations. Section 3 defines the main
performance metrics considered in this paper. In Section 4 we present the PEL
algorithm and provide our main performance bounds for this algorithm. Section
5 is devoted to the proof of these results. Section 6 discusses several aspects of
the obtained error bound and introduces two illustrative examples. In Section 7
we summarize the results obtained so far and discuss future work. Due to space
limitations we omit proofs of most intermediate results, and refer the reader to
[2] for the complete details.

2 Model Formulation

An MDP M is specified by a five-tuple 〈S,A,R, p, η〉, where S is a finite state
space, A is a finite action space, R is a finite reward set, p : S × A → ∆(S) is
the transition kernel and η : S ×A→ ∆(R) is the reward distribution function.
Here ∆(S) denotes the set of probability vectors over the set S, and similarly
for ∆(R). Given that at the time step t the state is st ∈ S and the action is
at ∈ A, the agent receives a random reward rt ∈ R with probability η(rt|st, at)
and moves to state st+1 ∈ S with probability p(st+1|st, at).

The observed history until time t is the sequence ht

= {s0, a0, r0, ..., st−1, at−1,

rt−1, st}. A (deterministic) decision rule is a mapping from history to action,
namely πt : Ht → A, where Ht = (S × A × R)t × S. A policy A is a collection
of decision rules {πt}∞t=0 so that at = πt(ht). Note that a (deterministic) learn-
ing algorithm is such a policy. Given an initial state s, the policy A induces a
stochastic process (st, at, rt)∞t=0 with probability measure PA,s·. The expectation
operator corresponding to this measure is denoted by EA,s.

Let V A(s)

= EA,s {

∑∞
t=0 γ

trt} denote the discounted return for policy A from
state s. Here 0 < γ < 1 is the discount factor, which we fix from now on. We
refer to V A(s) as the value function for policy A. A policy A = {πt}∞t=0 is called
stationary if πt = π for all t, where π : S → A is a function of the current
state only. It is well known (e.g., [9]) that there exists a deterministic stationary
policy π∗ which is optimal in sense that V π∗

(s) ≥ V A(s) for any state s and
any policy A. Denote the corresponding optimal value function as V ∗(·). Fur-
ther define the action-value function (or Q-function) for state-action pair (s, a) as

Q∗(s, a) = r̄(s, a)+γ
∑

s′∈S p(s
′|s, a)V ∗(s′), where r̄(s, a)

=
∑

r∈R rη(r|s, a).The
following equality, known as Bellman equation, holds for any stationary policy π

44 K. Dyagilev, S. Mannor, and N. Shimkin

and state s ∈ S: V π(s) = r̄(s, π(s))+ γ
P

s′∈S V π(s′)p(s′|s, π(s)), while the optimal
value function of policy π∗(s) satisfies V ∗(s) = maxaQ

∗(s, a) = Q∗(s, π∗(s)).
Let Rmax denote an upper bound on the expected one-step reward, so that
r̄θ(s, a) ≤ Rmax for all θ ∈ Θ, s ∈ S and a ∈ A.

In this paper we assume that the true MDP belongs to a known family
{Mθ}θ∈Θ of parameterized models, where Θ is a finite parameter set. All mod-
els in the given family share the same action, reward and state spaces, while
their transition and reward probabilities depend on the parameter θ ∈ Θ, i.e.,
Mθ =< S,A,R, pθ, ηθ >. For each MDP Mθ we denote by π∗θ , V ∗

θ and Qθ an
optimal stationary policy, the optimal value function and the Q-function, respec-
tively. In case the optimal policy is not unique, we henceforth fix one (arbitrary)
selection. The actual model M thus corresponds to some parameter θ0 ∈ Θ,
namely M = Mθ0 . We refer to θ0 as the true parameter.

3 Performance Metrics

An effective measure of on-line learning efficiency is the number of time steps
the algorithm prescribes sub-optimal action. Recall that an optimal action a∗ =
π∗(s) in state s satisfies Q∗(s, a∗) = V ∗(s). Hence the difference V ∗(s)−Q∗(s, a)
quantifies the effect of taking a single suboptimal action a at state s, and there-
after proceeding optimally. We define the action mistake count (AMC) as a
total number of ε-suboptimal state-action pairs visited by the algorithm during
its operation, namely, AMC(ε)

=

∑∞
t=0 I {Q∗(st, at) < V ∗(st)− ε}. Note that

for ε small enough AMC(ε) = AMC(0) (due to the finiteness of the state and
action spaces), so that all non-optimal actions are counted.

A more elaborate performance criterion was suggested by Kakade [4] and
originally called the “sample complexity of exploration”. This criterion relies on a
quantification of “sub-optimality” of a policy rather than a single action. We refer
to this criterion as the policy-mistake count (PMC) and define it in the following
way. Denote by A the policy of the learning algorithm. Let hτ be the observed
history up to time τ , and denote by V A(hτ)

= EA,s0

{∑∞
j=τ γ

j−τ rj

∣∣∣ hτ

}
the

value of the policy A starting from time τ . The policy mistake count is defined
as follows:

Definition 1. Let ε be a positive number. The time step t in said to be an ε-
suboptimal step if V A(ht) < V ∗(st)− ε. Equivalently, we say that the learning
agent follows an ε-suboptimal policy at time t. The policy-mistake count

(PMC) of a learning algorithm is defined as PMC(ε) �=
∞P

t=0

I
˘
V A(ht)<V ∗(st)−ε

¯
.

For any ε > 0 and learning algorithm AMC is dominated by PMC (see Lemma 1
in [2]), i.e., AMC(ε) ≤ PMC(ε). It follows that any upper bound on PMC also
applies to AMC. For this reason we shall focus in the following on PMC alone.
We now define the corresponding notion of a PAC algorithm in the following
way:

Efficient Reinforcement Learning in Parameterized Models 45

Definition 2. A learning algorithm A is called PMC-PAC (or just PAC) if,
for any positive ε and δ, its policy-mistake count (action-mistake count) is poly-
nomial in (|Θ| , ε−1, δ−1, (1− γ)−1) with probability of at least (1− δ).

4 The Parameter Elimination Algorithm

In discrete parameterized models, the learning problem may be reduced to the
identification of the true parameter or, at least, a parameter that leads to a near-
optimal control policy for the true model. Equivalently, one may try to eliminate
all other parameters from the set of optional parameters.

Define the log-likelihood function of the observation (st−1, at−1, rt−1, st) at
time step t as

lt(θ) = log pθ(st|st−1, at−1) + log ηθ(rt−1|st−1, at−1). (4.1)

The cumulative log-likelihood is then Gt(θ) =
∑t

i=1 lt(θ).

Algorithm 1. Parameter ELimination
Input:{Mθ}θ∈Θ – the finite family of possible MDPs, δ – an allowed probability of
error.
Initialize: Initialize the list of plausible parameter values to J0 = Θ. Initialize the
array of cumulative log-likelihood to G0(θ) = 0 for all θ ∈ Θ.
For t = 0, 1, ... do
1. Stopping condition: If Jt is a singleton, namely Jt = {θ}, then use the corre-
sponding policy π∗

θ indefinitely and skip items (2)-(5) below.
2. Find an optimistic parameter: Select a parameter value that maximizes the
value function among plausible parameter values: θ(t) := arg maxθ∈Jt V ∗

θ (st).
3. Act: Execute the action according to the optimal policy for the optimistic parame-
ter: at := π∗

θ(t)(st).
4. Update: Observe the reward rt and the next state st+1. Update for all θ ∈ Jt:
Gt+1(θ) := Gt(θ) + lt+1(θ) where lt+1 is defined in (4.1).
5. Eliminate: Set Jt+1 := Jt and do:

a. For all θ ∈ Jt+1 so that Gt+1(θ) = −∞, let Jt+1 := Jt+1 \ {θ}.
b. Find the most likely parameter in the plausible set θ̂ := arg maxθ∈Jt+1 Gt+1(θ).

c. For all θ ∈ Jt+1 so that Gt+1(θ̂)−Gt+1(θ) > log
h

3(|Θ|−1)
δ

i
, let Jt+1 := Jt+1 \ {θ}.

The PEL algorithm proceeds as follows (see Algorithm 1 for details). As an
input, the algorithm requires the finite family of possible MDPs {Mθ}θ∈Θ, with
common state, reward and action spaces. The value function V ∗

θ (·) and the op-
timal policy π∗θ (·) for each model can be calculated using one of the standard
algorithms, i.e., value iteration, policy iteration or linear programming (see [9]).
An allowed probability of error δ is also provided as input.

The algorithm maintains a list of plausible parameters Jt throughout its exe-
cution. Initially, all parameter values are considered plausible and then they are

46 K. Dyagilev, S. Mannor, and N. Shimkin

eliminated one by one. The elimination step is based on the Sequential Probabil-
ity Ratio Test (SPRT), namely, comparing the log-likelihood ratioGt(θi)−Gt(θj)
to a given threshold Gth > 0. If at time step t there exist parameters θi, θj ∈ Jt

so that G(θi)−G(θj) > Gth then θj is eliminated. Equivalently, we first find θ̂,
the most likely parameter in the set Jt, and then compare the likelihood of all
other plausible parameters to G(θ̂). As the error probability of each elimination
can be upper bounded by e−Gth , the selection of Gth = log

[
3(|Θ|−1)

δ

]
yields

cumulative error probability of all eliminations less than δ
3 (see section 5.4 for

details).
The exploration-exploitation tradeoff is addressed using the so-called “opti-

mism in face of uncertainty” principle. At each time step t, the PEL algorithm
selects an “optimistic” action in the following sense. First, the algorithm selects
the parameter θ(t) ∈ Jt that maximizes the value function V ∗

θ (st) for the current
state st. The selected action is then the optimal one given θ(t), i.e., at = π∗θ(t)(st).
We note that the selected action may correspond to a different parameter θ at
each state, even if the set Jt does not change.

The main result of the paper is the following one.

Theorem 1. Consider the PEL algorithm with parameter 0 < ε < Rmax

(1−γ) and
0 < δ < 1. With probability of at least 1− δ, PEL’s policy-mistake count is upper
bounded by

PMC(ε) ≤ |Θ| R3
max

ε3(1 − γ)6
L(|Θ| , ε, δ, γ), (4.2)

where L(|Θ| , ε, δ, γ) = 801 log
(

3|Θ|
δ

)
log 4Rmax

ε(1−γ) .

This theorem implies that the PEL algorithm is PAC in terms of the total
mistake bound, and its PMC is linear (up to the logarithmic term L(·)) in the
size of the parameter set. Note that the bound is independent of the cardinality
of the state and action spaces.

5 Proof of the Main Result

An outline of the proof of Theorem 1 is as follows. We begin in Section 5.1 by in-
troducing an optimistic auxiliary model that will prove useful later on. In Section
5.2 we define informative state-action pairs (Definition 3) that are roughly state-
action pairs that distinguish the true MDP and the auxiliary model. We next
show in Lemma 1 that within a finite time interval following an ε-suboptimal
time step (Definition 1), there is a positive probability to reach an informative
state-action pair. Moreover, Lemma 4 (Section 5.3) implies that the number of
ε-suboptimal steps encountered is bounded with high probability in terms of
number of actual visits to informative state-action pairs. Hence, once we show
that the number of visits to informative state-action pairs is bounded, we can
conclude that the policy-mistake count is bounded as well. To show the for-
mer, we bound in Section 5.4 the stopping time of the SPRT test (for any fixed
parameter θ �= θ0) using a non-decreasing measure of accumulated statistical

Efficient Reinforcement Learning in Parameterized Models 47

information related to Bhattacharyya’s information coefficient. In Section 5.5
we show that each visit to an informative state-action pair adds some strictly
positive amount of information to one parameter at least. Hence the number of
visits needed for SPRT to trigger is bounded. Using the pigeon-hole principle,
we obtain that the number of visits to an informative state action pairs until
convergence to an ε-optimal policy is also bounded, thus concluding the proof.

Note that from this point on all the probabilities and expectations refer to
the stochastic process induced by the PEL algorithm on the actual MDP Mθ0 ,
unless mentioned otherwise.

5.1 An Auxiliary Model

Consider some fixed subset of parameters J ⊆ Θ. For every s ∈ S, define the
optimistic parameter in J as θ(J, s) = argmaxθ∈J V

∗
θ (s) (with ties decided ar-

bitrarily). Define an auxiliary MDP MJ = 〈S,A,R, pJ , ηJ〉, where pJ(s′|s, a) =
pθ(J,s)(s′|s, a) and ηJ (r′|s, a) = ηθ(J,s)(r′|s, a). Further, define the following sta-
tionary policy: πJ (s) = π∗θ(J,s)(s). This policy picks at each state the optimal
action according to the parameter θ(J, s) that is optimistic for that state. (In
the context of the PEL algorithm, it is evident that as long as the set Jt is equal
to J , the algorithm follows this stationary policy.) Denote the value function of
the MDP MJ under the policy πJ as V πJ

J . For notational convenience we use the
abbreviated notation VJ . Then the auxiliary model is optimistic in the following
sense (see [2] for the detailed proof):

Lemma 1. For any s ∈ S and θ ∈ J it holds that1 VJ(s) ≥ V ∗
θ (s).

5.2 Implicit Explore or Exploit

We next prove that the PEL algorithm implicitly provides a tradeoff between
possible exploration and exploitation. In other words, the agent either follows an
ε-optimal policy or otherwise gains some information with a positive probability.

The proof is partially based on results from [12] and [6]. For a stationary policy

π denote the H-step value function by V π(s,H)

= Eπ,s

{∑H−1
t=0 γtrt

}
. The first

lemma addresses the sensitivity of the value function to the time horizon.

Lemma 2. If H ≥ 1
1−γ log Rmax

ε(1−γ) then |V π(s,H)− V π(s)| ≤ ε for all policies
π and states s.

Proof. The result follows easily by bounding the tail of sum of rewards in the
definition of the value function (see e.g. Lemma 2 in [6]).

In the following we use Teff = 1
1−γ log 4Rmax

ε(1−γ) as an effective horizon length,
beyond which the effect on the discounted return is negligible.

1 Note that the auxiliary model MJ need not be in the family {Mθ}θ∈Θ. Hence, it
may even hold that VJ (s) > V ∗

θ (s) for every θ ∈ Θ and s ∈ S.

48 K. Dyagilev, S. Mannor, and N. Shimkin

The following lemma bounds the sensitivity of the discounted reward function
to perturbations in the transition and reward probabilities. For two probability
distributions p and q on the finite set A, we use the l1 norm to measure their
separation: ‖p(·) − q(·)‖1 =

P
a∈A |p(a) − q(a)|.

Lemma 3. Let M1 =< S,A,R, p1, η1 > and M2 =< S,A,R, p2, η2 > be two
MDPs with non-negative rewards bounded by Rmax. Let π be some stationary
policy and let ε be a positive number. If ‖η1(·|s, a)− η2(·|s, a)‖1 ≤

ε(1−γ)2

Rmax
and

‖p1(·|s, a)− p2(·|s, a)‖1 ≤
ε(1−γ)2

Rmax
for all states s and actions a, then

maxs∈S

∣∣V π
M1

(s)− V π
M2

(s)
∣∣ ≤ ε.

Proof. Follows from Lemma 4 in [12], after noting that |r̄1(s, a)− r̄2(s, a)| ≤
Rmax ‖η1(·|s, a)− η2(·|s, a)‖1.

To state the central result of this subsection, define informative state-action pairs
as those pairs for which either the state transition or the reward distribution are
distinct under the true and optimistic models. More precisely:

Definition 3. Recall that θ0 is the true parameter. Let θ(J, s) be defined as in
Subsection 5.1. For t ≥ 0, let Kt be the set of state-action pairs (s, a) for which‚‚ηθ(Jt,s)(·|s, a) − ηθ0 (·|s, a)

‚‚
1
≤ ε(1−γ)2

4Rmax
, and

‚‚pθ(Jt,s)(·|s, a) − pθ0(·|s, a)
‚‚

1
≤ ε(1−γ)2

4Rmax
.

We say that the PEL algorithm visited an informative state-action pair at
time t, if (st, at) /∈ Kt.

The following proposition asserts that occurrence of an ε-suboptimal step leads
to an explorative interval, where an informative state-action pair is visited with
probability of at least ε(1−γ)

2Rmax
. Recalling the definition of an ε-suboptimal time

step in Definition 1, let

E1(t)
�
= {θ0 ∈ Jt} ∩ {V At(ht) < V ∗

θ0(st) − ε}, t ≥ 0 (5.1)

denote the event that the action at time step t is ε-suboptimal and the true
parameter wasn’t eliminated before time t. Let

E2(t)
�
= {(st−1, at−1) /∈ Kt−1} ∪ {Jt 	= Jt−1}, t ≥ 1 (5.2)

be the event that at time step (t−1) either an informative state-action pair was
visited or some parameter was eliminated from the set Jt−1 of plausible param-

eters at time t. Denote by E3(t)

=

⋃t+Teff
τ=t+1E2(τ) the event that the informative

event E2(τ) occurred for τ between (t+ 1) and (t+Teff). Let Ft

= σ{ht} be the

sigma algebra of the history sequence until time step t. Then E1(t), E2(t) ∈ Ft,
while E3(t) ∈ Ft+Teff .

Proposition 1. For every t and history ht that satisfies E1(t),
PA,s0 {E3(t)|ht} > ε(1−γ)

2Rmax
.

Proof. See [2] for the complete proof.

Efficient Reinforcement Learning in Parameterized Models 49

5.3 Discovery Lemma

Proposition 1 shows that in the Teff steps following an ε-suboptimal step there
is a probability of at least ε(1−γ)

2Rmax
to reach some informative state-action pair

or eliminate some parameter from Jt. Based on that, Lemma 4 below bounds
the number of ε-suboptimal steps in terms of the number of actual visits to
informative state-action pairs and parameter eliminations.

Let Kt be as in Definition 3 and let N2 be a positive integer. Recall the
definitions of E1(t), E2(t), E3(t) and Ft from the previous section.

Lemma 4. For any positive integer N2, let T2(N2) be the time step on which
the event E2(t) occurred for the N2-th time, namely,

T2(N2) = inf

(
n

˛̨̨̨
˛

nX
k=1

I {E2(k)} = N2

)
(5.3)

(with T2(N2) = ∞ is such n does not exist). Then, for all ε > 0 and 0 < δ < 1,

PA,s0
nPT2(N2)

k=0 I {E1(k)}≤N1

o
≥1−δ, where N1

= 4RmaxTeff

ε(1−γ)

[
N2+ 8Rmax

ε(1−γ) log Teff

δ3

]
.

Proof. See [2] for the complete proof.

5.4 Sequential Hypothesis Testing

The sequential hypothesis test we use in our algorithm was originated by Wald
([14]) and is defined in the following way. Consider a discrete-time stochastic
process {xt}∞t=0 taking values in a finite set S. Denote by xn

0 = {x0, ..., xn} the
observations obtained by time n. Let the probability of such observations under
hypothesis H0 be denoted as p0(xn

0), and under H1 as p1(xn
0). Note that the

discussion here is not limited to Markov processes.

Definition 4. For any 0 < δ < 1 define the stopping time NW (δ) = infn{
n
∣∣∣∣∣∣log p1(xn

0)
p0(xn

0)

∣∣∣ ≥ − log δ
}
, and the decision rule dW (δ) that chooses upon stop-

ping a more likely hypothesis.

It was shown by Wald ([14]) that the error probability of the SPRT is bounded
by δ:

Theorem 2 (Wald). P
{
dW (δ) = H0

∣∣H1
}
≤ δ and P

{
dW (δ) = H1

∣∣H0
}
≤ δ.

We next establish a useful bound on the stopping time of SPRT, using an auxil-
iary stopping time for the same process based on the Bhattacharyya coefficient
rather than the likelihood ratio. We begin by defining the Bhattacharyya coef-
ficient [3].

Definition 5. Let p and q be probability distributions on the finite set S. Then
the Bhattacharyya coefficient is ρ

=

∑
s′∈S

p1/2(s′)q1/2(s′).

Note that ρ ≤ 1 by the Cauchy-Schwarz inequality. The Bhattacharyya distance
(or information) is defined as − log ρ. This metric is related to the l1-norm of
(p− q) in the following way (see [2] for the complete proof):

50 K. Dyagilev, S. Mannor, and N. Shimkin

Lemma 5. − log ρ ≥ 1
8 ‖p− q‖

2
1.

Definition 6. Consider the same processes and hypotheses as in Definition 4.
Denote the by ρ(xn

0) =
P

x′∈S

p
1/2
0 (x′|xn

0)p1/2
1 (x′|xn

0) the Bhattacharyya coefficient

between p0(·|xn
0) and p1(·|xn

0). Then the Bhattacharyya stopping time (for
0 < δ < 1) is defined as: NB(δ) = infn

˘
n
˛̨Qn−1

t=0 ρ(xt
0) ≤ δ or or p1(xn|xn−1

0) = 0
¯
.

We note that the stopping condition
∏n−1

t=0 ρ(x
t
0) ≤ δ can be written as Rn

=

−
∑n−1

t=0 log ρ(xt
0) ≥ − log δ, where Rn is the cumulative Bhattacharyya distance

(or total Bhattacharyya information).
While our algorithm uses the Wald test, the Bhattacharyya stopping time will

be more handy for analysis as Rn is a non-decreasing sequence. The following
proposition relates these two stopping times (see [2] for the complete proof.).

Proposition 2. For 0 < δ < 1, the inequality P

n
NW (δ) > NB(δ3/2)

o
≤ δ holds

both under H0 and H1.

5.5 Proof of the Main Result

This subsection builds on our previous results to establish the upper bound on
the policy-mistake count (Theorem 1). Consider the PEL algorithm applied to
the true MDP Mθ0. The proof proceeds through the following steps. In steps 1-3
we define three “unwanted” events: the event E4 on which the true parameter
θ0 is eliminated from the plausible parameter set Jt at some point; the event
E5 on which (essentially) there is insufficient number of visits to informative
state-action pairs despite a large number of “sub-optimal” steps; and the event
E6 on which a sufficient amount of Bhattacharyya information does not lead to
parameter elimination in the SPRT test. We show that the probability of each
is bounded by δ

3 . In step 4 and step 5 the required upper bound on the PMC
is shown to hold on the complement of E4 ∪E5 ∪ E6. In step 6 we combine the
above to conclude the required result.

Step 1: Let E4

= {θ0 /∈ ∩∞

t=1Jt} be the event that the actual parameter is elim-
inated from the set Jt of plausible parameters at some point. As explained in
Section 4, the elimination step of the algorithm can be interpreted as a SPRT
between any pair of parameter in Jt, with the threshold of δ′

= δ

3(|Θ|−1) . From
Theorem 2 we obtain that the probability of eliminating θ0 due to any other
fixed parameter is less than δ′. Therefore, by union bound the total probability
of eliminating θ0 is less then (|Θ| − 1)δ′, namely, PA,s0 {E4} ≤ (|Θ| − 1)δ′ = δ

3 .

Step 2: Recall the definition of E1(t) and T2 from (5.1) and (5.3). Let E5

={∑T2(N2)

t=1 I {E1(t)} > N1

}
be the event that the event E1(t) was encountered

more than N1 times before the N2-th occurrence of the event E2(t). Here, N2
�=

12(|Θ|−1)
“

4Rmax
ε(1−γ)2

”2

log(1
δ′)+(|Θ|−1) (this selection is explained in step 4) andN1

is selected as in Lemma 4 with δ := δ
3 , namely, N1

�= 4RmaxTeff
ε(1−γ)

h
N2+ 8Rmax

ε(1−γ)
log 3Teff

δ

i
.

Efficient Reinforcement Learning in Parameterized Models 51

Then, Lemma 4 implies (for any N2 and in particular for the one above),
PA,s0 {E5} ≤ δ

3 .

Step 3: Consider hypothesis testing between MDPs Mθ0 and Mθ for θ �= θ0. De-
note by NW (θ, δ), Rn(θ) and NB(θ, δ) the corresponding SPRT stopping time,
the total Bhattacharyya information and the Bhattacharyya stopping time (see
Definitions 4 and 6). Let E6 be the event on which NW (θ, δ′) > NB

(
θ, (δ′)3/2

)
holds for some θ �= θ0 (i.e., the relation between Bhattacharyya stopping time
and SPRT stopping time defined in Lemma 2 is violated). Using Proposition 2
and the union bound we conclude that PA,s0 {E6} ≤ (|Θ| − 1)δ′ = δ

3
.

Step 4: Consider a realization h∞ = {st, at, rt}∞t=0 ∈ Ec
4∩Ec

5∩Ec
6. Recall the def-

inition of the event E2(t) in (5.2). We proceed to show that for this realization,∑∞
t=1 I {E2(t)} ≤ N2.
Let t be a time step on which an informative state-action pair (st, at) is

visited (see Definition 3). Let us assess the Bhattacharyya distance − log ρt be-
tween the joint distribution of (rt, st+1) under the true model Mθ0 and the
auxiliary model MJ . Evidently, it equals to the sum of Bhattacharyya distances
between ηθ0(·|st, at) and ηθ(t)(·|st, at), and between pθ0(·|st, at) and pθ(t)(·|st, at),
where θ(t) is the optimistic parameter at time t (see Algorithm 1), namely

− log ρt = − log
»P

s∈S

p
1/2
θ(t (s|st, at)p

1/2
θ0

(s|st, at)
–
− log

»P
r∈S

η
1/2
θ(t)(r|st, at)η

1/2
θ0

(r|st, at)
–
.

Since (st, at) /∈ Kt, it follows by Lemma 5,− log ρt >
1
8

(
ε(1−γ)2

4Rmax

)2

= B0. Hence

each visit to an informative state-action pair (st, at) /∈ Kt increases Rt(θ) by
at least B0 for at least one θ ∈ Jt. As the sequence Rt(θ) is non-decreasing,
the total number of such increments until the stopping time NB(θ) triggers is
upper bounded by log((1/δ′)3/2)

B0
. By definition, for h∞ /∈ E6 the parameter θ is

eliminated no later than t = NB
(
θ, (δ′)3/2

)
, therefore, by the pigeon-hole prin-

ciple, the total number of visits to informative state-action pairs until all θ �= θ0

are eliminated from Jt is bounded by (|Θ| − 1) log((1/δ′)3/2)
B0

. Recall that E2(t)
occurs if an informative state-action pair was visited at time (t− 1) or a param-

eter was eliminated from Jt−1. Hence,
∞P

t=1

I {E2(t)} ≤
∞P

t=1

I {(st−1, at−1) /∈ Kt−1} +
∞P

t=1

I {Jt 	= Jt−1} yielding
P∞

t=1 I {E2(t)} ≤ (|Θ| − 1) log((1/δ′)3/2)
B0

+ (|Θ| − 1) ≡ N2.

Step 5: Let T2, N2 be as in Step 2. For h∞ as before we argue that PMC(ε) ≤

N1. Since h∞ ∈ Ec
5, N1 ≥

T2(N2)∑
t=0

I {E1(t)} =
[∞∑

t=0
I {E1(t)}

]
I {T2(N2) = ∞}+[∞∑

t=0
I {E1(t)}

]
I {T2(N2) <∞}−

[
∞∑

t=T2(N2)+1
I {E1(t)}

]
I {T2(N2) <∞}. Note

that the argument in Step 4 implies, that for t > T2(N2) the set Jt of plausible
parameters contains only the true parameter θ0. For this realization the PEL
algorithm follows an optimal policy πθ0 from time T2(N2) onward, therefore

52 K. Dyagilev, S. Mannor, and N. Shimkin

∞∑
t=T2(N2)+1

I {E1(t)} = 0. Hence,N1 ≥
∞P

t=0

I {E1(t)} =
∞P

t=0

I
˘
V At(ht) < V ∗

θ0(st) − ε
¯

,

where equality holds since θ0 ∈ Jt for realization in Ec
4 (see 5.2). Hence, by

definition of PMC, N1 ≥ PMC(ε).

Step 6: The bound N1 ≥ PMC(ε) holds on h∞ ∈ Ec
4 ∩ Ec

5 ∩ Ec
6. But, by the

union bound, PA,s0 {Ec
4 ∩ Ec

5 ∩ Ec
6} ≥ 1− δ. Substituting N2 and Teff yields the

inequality (4.2) with probability of at least (1− δ). ��

6 Discussion and Illustrative Examples

In this section we briefly discuss some aspects of the error bound of Theorem 1,
and in particular its dependence on the size |Θ| of the parameter set. As may
be seen, the dependence on |Θ| is essentially linear. The examples below are
meant to illustrate two points in this respect: (1) Without further assumptions
on the model, linear dependence on |Θ| is the best that can be obtained by any
algorithm. (2) If the model has a favorable representation, the PEL algorithm
may have much better error bounds.

Example 6.1. Consider an array of N one-armed bandits b1, ..., bN , each with
a payoff of 0 (loss) or 1 (gain). It is known that exactly one of these bandits has
a high gain probability of pmax, and all others have a lower gain probability of
pmin < pmax. The agent may play any single bandit bi at each time step. De-
note by b∗ the optimal bandit with expected payoff pmax. Obviously, the optimal
policy is to always play this bandit.

Given that the index of the best bandit is initially unknown, our model set
contains N different models, namely |Θ| = N . Consider PMC(ε) with ε small
enough so that a policy mistake occurs each time the agent chooses a suboptimal
bandit. In order to minimize the policy mistake count, a learning agent needs to
quickly converge to the (initially unknown) bandit b∗. It is easily seen that any
learning algorithm may need to try out all N bandits in order to find the best
one; thus, the (worst-case) PMC is at least linear in |Θ| (see [8] for a stronger
result).

The next queueing-control example demonstrates that under appropriate con-
ditions, the PEL algorithm makes efficient use of the available statistical informa-
tion which allows to reduce the dependence of the error bound on the cardinality
of Θ. Here this dependence is reduced from linear to logarithmic.

Example 6.2. Consider a discrete time queuing system that consists of N
queues {Q1, ..., QN}, each with a finite buffer size of K and a server Si. The
system is equipped with a router that sends arriving jobs to one of the queues.
Let the job arrival process be geometric with a known rate λ. Let the service
process of each server Si be geometric with rate µi ∈ M, where the set M ⊆ R

of possible service rates is finite and of size M . We assume that the arrival and
the service processes are independent of each other and are fully observed.

Efficient Reinforcement Learning in Parameterized Models 53

This system can be modeled as a finite-state finite-action MDP with paramet-
rization vector (µ1, ..., µN) ∈ MN , hence the PEL algorithm and its analy-
sis apply with |Θ| = MN . Straightforward substitution in (4.2) yields that
PMC(ε) ≤ K0M

N , where K0 = 801
ε3(1−γ)6 log 3MN

δ log 4
ε(1−γ) , with probability of

(1− δ). On the other hand, a refined model-specific analysis produces a tighter
bound of PMC(ε) ≤ K0N

3 (with probability 1− δ). Thus, the exponential term
MN is replaced with a polynomial term N3 and the remaining dependence on
M is logarithmic.

Due to space limitations we do not provide here the analysis of this bound
but rather refer the reader to [2] for the details. The critical observation is that
statistical information about the service rate µi is obtained whenever the corre-
sponding server Si is occupied, no matter what the other state components are.
Thus, the service rate of the queue is correctly estimated by way of elimination
(with high probability) after a certain number of customers have been served
in it. On the other hand, it can be shown that a policy-mistake at some stage
implies that some customer is to be served in a queue whose rate has not yet
been fully estimated. The quantification of these observations yields the bound.

7 Conclusion

Parameterized models offer a great potential for reduction of learning time and
cost in large RL problems, alongside less structured methods such as function ap-
proximation, aggregation and state abstraction. The former should be used when
the available prior information allows to reduce model uncertainty to a lower
dimensional parameter space, thereby allowing explicit modeling of inter-state
dependencies and avoiding the pitfalls inherent in the local nature of learning in
the general, unstructured model.

In this paper we have considered the case of parameterized models with with
discrete parameters. We proposed a learning algorithm that incorporates efficient
exploration to achieve polynomial mistake bounds in the PAC sense. As may
be expected these bounds are independent of the cardinality of the state and
action spaces, and in fact may well apply to continuous spaces under reasonable
regularity conditions.

Several choices were made in the construction of this algorithm. First, the
basic approach taken was that of parameter elimination, rather than on-line
parameter estimation. The former has the advantage of reducing the considered
parameter set over time, which can quickly converge to a small set if sufficient
statistical information is obtained. On the theoretical side, this approach allows
the application of sequential hypotheses testing for the analysis of the algorithm.
Furthermore, the possible error of eliminating the true parameter cannot be
rectified later, and it is therefore important to keep its probability small. The
second choice made in the algorithm is to incorporate an optimistic policy which
is defined on a per-state basis, rather than freeze a stationary that is optimal for
a certain parameter from a certain state. We believe this approach may add to
exploration efficiency, although no direct comparison is available. Further work

54 K. Dyagilev, S. Mannor, and N. Shimkin

of immediate interest includes the extension of the PEL algorithm to continuous
parameter spaces though discretization; the development of other (estimation-
based) algorithms that may be appropriate for such spaces; the incorporation of
computational constraints; and consideration of other learning criteria such as
the total regret for the average reward problem.

References

1. Brafman, R.I., Tennenholtz, M.: R-max - a general polynomial time algorithm for
near-optimal reinforcement learning. JMLR 3, 213–231 (2002)

2. Dyagilev, K., Mannor, S., Shimkin, N.: Efficient reinforcement learning in param-
eterized models. Technical report, Technion (2008),
http://www.ee.technion.ac.il/people/shimkin/PREPRINTS/PEL full.pdf

3. Kailath, T.: The divergence and bhattacharyya distance measures in signal selec-
tion. IEEE Transactions of Communication Technology com-15(1), 52–60 (1967)

4. Kakade, S.M.: On the Sample Complexity of Reinforcement Learning. Ph.D thesis,
University College London (2003)

5. Kearns, M.J., Koller, D.: Efficient reinforcement learning in factored MDPs. In:
IJCAI, pp. 740–747 (1999)

6. Kearns, M.J., Singh, S.P.: Near-optimal reinforcement learning in polynomial time.
JMLR 49, 209–232 (2002)

7. Kumar, P.R., Varaiya, P.: Stochastic Systems: Estimation, Identification and Adap-
tive Control. The MIT Press, Cambridge (1998)

8. Mannor, S., Tsitsiklis, J.N.: The sample complexity of exploration in the multi-
armed bandit problem. JMLR 5, 623–648 (2004)

9. Puterman, M.L.: Markov Decision Processes. Discrete Stochastic Programming.
Wiley, Chichester (1994)

10. Ryabko, D., Hutter, M.: Asymptotic learnability of reinforcement problems with
arbitrary dependence. In: Balcázar, J.L., Long, P.M., Stephan, F. (eds.) ALT 2006.
LNCS, vol. 4264, pp. 334–347. Springer, Heidelberg (2006)

11. Strehl, A.L., Li, L., Wiewiora, E., Langford, J., Littman, M.L.: PAC model-free
reinforcement learning. In: Proceedings of the ICML 2006 (2006)

12. Strehl, A.L., Littman, M.L.: A theoretical analysis of model-based interval estima-
tion. In: Proceedings of ICML 2005, pp. 857–864 (2005)

13. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT
Press, Cambridge (1998)

14. Wald, A.: Sequential Analysis. Wiley, Chichester (1952)

http://www.ee.technion.ac.il/people/shimkin/PREPRINTS/PEL_full.pdf

Regularized Fitted Q-Iteration: Application to
Planning

Amir massoud Farahmand1, Mohammad Ghavamzadeh1, Csaba Szepesvári1,
and Shie Mannor2

1 Department of Computing Science, University of Alberta,
Edmonton, AB T6G 2E8, Canada

{amir,mgh,szepesva}@cs.ualberta.ca
2 Department of Electrical & Computer Engineering, McGill University,

Montreal, QC H3A 2A7, Canada
shie.mannor@mcgill.ca

Abstract. We consider planning in a Markovian decision problem, i.e.,
the problem of finding a good policy given access to a generative model
of the environment. We propose to use fitted Q-iteration with penalized
(or regularized) least-squares regression as the regression subroutine to
address the problem of controlling model-complexity. The algorithm is
presented in detail for the case when the function space is a reproducing-
kernel Hilbert space underlying a user-chosen kernel function. We derive
bounds on the quality of the solution and argue that data-dependent
penalties can lead to almost optimal performance. A simple example is
used to illustrate the benefits of using a penalized procedure.

1 Introduction

We consider planning in a discounted Markovian Decision Problem (MDP) with
continuous state space and finite action space. We assume that transitions can
be generated at any selected state for any given action. The algorithm that we
consider is fitted Q-iteration (e.g., [8]), an instance of sample-based approximate
dynamic programming.

The algorithm’s main distinguishing characteristic is that the value function
iterates are obtained by solving appropriately defined regularized least-squares
regression problems. We give the particular form of the algorithm when the
value functions considered in the iterations belong to some Reproducing Kernel
Hilbert Space (RKHS). Our main theoretical results bound the quality of the
solutions as a function of the number of samples used by the algorithm, the
relation of the RKHS and the MDP and the number of samples used. As usual
when regularization is employed, performance is tuned through the choice of a
single scalar parameter, the penalty factor, which, in turn, can be selected in a
data dependent manner to optimize the performance.

The rationale of studying the use of regularization in solving MDPs is that
regularization has proven to be an extremely effective tool in machine learning,
in particular in supervised learning. The main idea underlying regularization is

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 55–68, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

56 A.m. Farahmand et al.

to achieve model selection by considering the complexity of solution candidates
individually. This is done by adding an appropriate complexity penalty, multi-
plied by the so-called regularization coefficient, to the empirical risk functional.
When the reguralization coefficient is chosen in an appropriate way (based on
the data or by complexity regularization), automatic adaptation to the complex-
ity of the target function becomes possible: The rate of convergence of such a
method is almost as fast as if the complexity of the target function was known
beforehand (e.g., Theorem 21.2 of [10]).

As the regularization coefficient effectively controls the size of the function
space where the solutions are sought in, our approach of using reguralization in
fitted Q-iteration can be considered as a way of tuning the function approximator
in an approximate dynamic programming procedure. Recently this tuning prob-
lem has received considerable attention (e.g., [7, 8, 13, 15, 18, 19]). However, none
of the previous works that we know of explored in a systematic manner how regu-
larization influences the performance of the resulting procedure. The only works
that we know of that used regularization are that of Jung and Polani [11], Loth
et al. [14] and Xu et al. [22]. In particular, Jung and Polani [11] explored penaliz-
ing the empirical L2-norm of the Bellman-residual for finding the value function
of a policy given a trajectory in a deterministic system, while L1-penalties for
the same problem were considered by Loth et al. [14]. As the straightforward im-
plementation of penalized least-squares involves a nontrivial computational cost,
both papers focused on computational efficiency. Xu et al. [22], on the other hand,
used sparsification in Least Squares Temporal Difference learning (LSTD) as an
implicit form of regularization and studied the performance of the resulting algo-
rithm experimentally. In our more recent work, we analyzed Regularized Policy
Iteration methods that use LSTD and a modified version of Bellman Residual
Minimization (BRM)and provided finite time performance bounds [9].

Works where planning in generative models were considered include those of
Kearns et al. [12] and Ng and Jordan [17]. Our work is complementary: Our
method is guaranteed to achieve optimality in the limit (unlike [17] where policy
search with a fixed policy class is considered) and it does not scale exponentially
with the effective planning horizon (unlike the lookahead tree building method
of [12]). However, our method comes with other restrictions: The MDP has to
be sufficiently regular in a sense that will be discussed later. The immediate
precursor of this work is that of Munos and Szepesvári [16], where fitted value-
iteration was studied in the same framework. In contrast to the approach followed
here, Munos and Szepesvári considered state-value functions and they did not
study regularization. Although our toolkit is the same, due to these differences
our results are different than those in [16], as will be further discussed below.

1.1 The Organization of the Paper

We present the notations and the necessary background on MDPs in Section 2.
The fitted Q-iteration algorithm is recalled in Section 3. The first main result
that relates the performance of the eventual policy and the Lp-norms of the
errors committed during the iterations is presented in Section 4. This result is

Regularized Fitted Q-Iteration: Application to Planning 57

in turn used in Section 5 to arrive at specific bounds for L2 regularization. The
behavior of the algorithm and the tradeoffs involved are illustrated on a simple
domain in Section 6.

2 Background and Notation

Because we consider continuous state spaces, we need a few concepts from analy-
sis. These are introduced first. This is followed by the introduction of the notation
and concepts used in connection to MDPs. We refer the reader to Bertsekas and
Shreve [4] for further details in connection to these.

For a measurable space with domain S, we let M(S) denote the set of prob-
ability measures over S. For p ≥ 1, a probability measure ν ∈ M(S), and a
measurable function f : S → R, we let ‖f‖p,ν denote the Lp(ν)-norm of f :

‖f‖p
p,ν =

∫
|f(s)|pν(ds).

For brevity, we shall write ‖f‖ν to denote the L2(ν)-norm of f . The supremum-
norm, ‖f‖∞, of f is defined by ‖f‖∞ = supx∈X |f(x)|. We denote the space
of bounded measurable functions with domain X by B(X), and the space of
measurable functions with bound 0 < K <∞ by B(X ;K).

A finite-action discounted MDP is defined by a quintuple (X ,A, P, S, γ), where
X is the (possibly infinite) state space, A = {a1, a2, . . . , aM} is the finite set of
actions, P : X × A → M(X) is the transition probability kernel with P (·|x, a)
being the next-state distribution upon taking action a in state x, S(·|x, a) gives
the corresponding distribution of immediate rewards and γ ∈ (0, 1) is the discount
factor. We make the following assumptions on the MDP:

Assumption A1 . X is a compact subset of the d-dimensional Euclidean space.
We assume that the random immediate rewards are between −R̂max and R̂max,
and the expected immediate rewards r(x, a) =

∫
rS(dr|x, a) are bounded by

Rmax: ‖r‖∞ ≤ Rmax. (Note that Rmax ≤ R̂max.)

A stationary Markov policy is specified by a measurable mapping π : X →M(A).
Such a policy and a random initial stateX0 ∈ X gives rise to a random trajectory
(Xt, At, Rt)t∈N that we call a trajectory of π: Here At ∼ π(·|Xt), Rt ∼ S(·|Xt, At)
and Xt+1 ∼ P (·|Xt, At). A policy is deterministic if π(·|x) concentrates on a
single action for all states x ∈ X . Such a policy will be identified with a mapping
π : X → A in the obvious way. In the rest of this paper, we use the term policy
to refer to stationary Markov policies.

The value of a policy π when it is started from a state x is defined as the total
expected discounted reward that is incurred while the policy is executed:

V π(x) = Eπ

[∞∑
t=0

γtRt

∣∣∣∣∣X0 = x

]
, x ∈ X .

58 A.m. Farahmand et al.

Here (Xt, At, Rt) is a random trajectory underlying π (signified by the use of π
as the subindex of the expectation operator in the definition of V π), where X0 is
such that the support of its distribution is the full state space X (otherwise this
distribution can be chosen arbitrarily). Function V π is also called the state-value
function of policy π. Closely related to V π is the action-value function of π:

Qπ(x, a) = Eπ

[∞∑
t=0

γtRt

∣∣∣∣∣X0 = x,A0 = a

]
, (x, a) ∈ X ×A.

Here the distribution ofX0 is restricted as previously,A0 is such that at time zero
all actions are selected with positive probability everywhere (P (A0 =a|X0 =x) >
0, (x, a) ∈ X × A), R0 ∼ S(·|X0, A0), X1 ∼ P (·|X0, A0) and otherwise (Xt, At,
Rt)t≥1 is a trajectory underlying π. It is easy to see that for any π, the functions
V π and Qπ are bounded by Rmax/(1− γ).

Given an MDP, the goal is to find a policy that attains the best possible
values,

V ∗(x) = sup
π
V π(x)

simultaneously for all states x ∈ X . A policy achieving this goal (i.e., V π = V ∗)
is called an optimal policy. Function V ∗ is called the optimal value function.

In order to characterize optimal policies let us define the optimal action-value
function,

Q∗(x, a) = sup
π
Qπ(x, a), (x, a) ∈ X ×A,

and the concept of greedy policies: A deterministic policy π is greedy w.r.t. an
action-value function Q ∈ B(X × A) if, for all x ∈ X and a ∈ A, π(x) ∈
argmaxa∈AQ(x, a). Although greedy policies are non-unique, we will write (by
slightly abusing the notation) π = π̂(.;Q). Because A is finite, a greedy policy
always exists no matter how Q is chosen. The importance of Q∗ is that any
greedy policy w.r.t. Q∗ is optimal. Hence, to find an optimal policy it suffices to
determine Q∗.

The Bellman optimality operator T : B(X ×A) → B(X ×A) is defined by

(TQ)(x, a) = r(x, a) + γ

∫
max
a′∈A

Q(y, a′)P (dy|x, a).

As it is well known, T is a contraction operator w.r.t. the supremum-norm with
index γ: ‖TQ− TQ′‖∞ ≤ γ ‖Q−Q′‖∞, Q,Q′ ∈ B(X). Moreover, the optimal
action-value function is the unique fixed point of T : TQ∗ = Q∗. Starting from any
Q0 ∈ B(X ×A), Qk+1 = TQk is thus guaranteed to converge (at an exponential
rate) to Q∗. This procedure is called value iteration.

Throughout the paper we will use F ⊂ { f : X → R } to denote some subset
of real-valued functions over the state-space X . For convenience, we will treat
elements of FM as real-valued functions f defined over X ×A with the obvious
identification f ≡ (f1, . . . , fM), f(x, aj) = fj(x), j = 1, . . . ,M (note that M de-
notes the number of actions). The set FM will be the set of admissible functions
used in the optimization step of our algorithm.

Regularized Fitted Q-Iteration: Application to Planning 59

FittedQ(D,K,Q0)
// D: samples
// K: number of iterations
// Q0: Initial action-value function
Q ← Q0 // Initialization
for k = 0 to K − 1 do

Q′ ← FitQ(Q, D, k)
Q ← Q′

end for
return Q

Fig. 1. Fitted Q-Iteration

3 Algorithm

The algorithm studied in this paper is an instance of the generic fitted Q-iteration
method (e.g., [8]), whose pseudo-code is shown in Fig. 1. The algorithm attempts
to approximate the optimal action-value function Q∗ and mimics value iteration.
Since computing the Bellman operator applied to the last iterate at any point in-
volves evaluating a high-dimensional integral, we use a Monte-Carlo approxima-
tion together with a regression procedure. For this purpose a set of samples, D is
generated:D = {(X1, A1, R1, X

′
1), . . . , (XN , AN , RN , X

′
N)}. Here,Rt, X

′
t are the

reward and the next-state when action At is chosen in stateXt: Rt ∼ S(·|Xt, At),
X ′

t ∼ P (·|Xt, At). For the sake of simplicity, we assume that the actions are gen-
erated by some fixed stochastic stationary policy πb: At ∼ πb(·|Xt) and {Xt} is
an i.i.d. sequence. We will denote the common distribution underlying (Xt, At)
by ν. The state-marginal of ν is denoted by νX . We assume that ν is a strictly
positive measure, i.e., its support is X × A. Intuitively, this ensures that the
samples cover the whole state-action space. In particular for this we must have
that πb0

def= mina∈A infx∈X πb(a|x) > 0.
The fitting procedure FitQ studied in this paper is penalized least-squares.

Assuming that in the kth iteration we use samples with index Nk ≤ i < Nk +
Mk = Nk+1 − 1, the (k + 1)th iterate is obtained by

Qk+1 = argmin
Q∈FM

1
Mk

Nk+Mk−1∑
i=Nk

[
Ri + γmax

a′∈A
Qk(X ′

i, a
′)−Q(Xi, Ai)

]2 + λPen(Q),

(1)

where Pen(Q) is a customary penalty term and λ > 0 is the regularization coeffi-
cient.1 The first term is the sample-based least-squares error of using Q(Xi, Ai)

1 Note that in practice one would generate the samples whenever they are needed, i.e.,
there is no need to generate and store all the samples. However, it is also possible
to reuse the samples if sample generation is expensive. In such a case the analysis
needs to be changed slightly.

60 A.m. Farahmand et al.

to predict Ri + γmaxa′∈AQk(X ′
i, a

′) at (Xi, Ai). This term is the empirical
counterpart to the loss Lk(Q) = E

[
(Ri + γmaxa′∈AQk(X ′, a′)−Q(X,A))2

]
.

The minimizer of this loss function is the regression function, which, for any
fixed Qk, in our case is just TQk:

E

[
Ri + γmax

a′∈A
Qk(X ′

i, a
′) |Xi = x,Ai = a

]
= (TQk)(x, a).

As the number of samples grows to infinite, the empirical loss converges to
Lk and we expect the iterate Qk+1 to converge to TQk. To achieve this, one
needs to balance the expressiveness of the function class and its complexity (or
the resulting function would be overfitted or underfitted). This is the job of
the second term on the right hand side of (1). This term implicitly regulates
the acceptable complexity of solutions: Choosing larger λ means searching in a
smaller space of functions.

When F is a Sobolev-space2 of appropriate smoothness order and Pen(Q) is
the corresponding Sobolev-space norm (the L2-norm of the generalized partials
of Q), this optimization leads to thin-plate spline estimates, popular in the non-
parametric statistics literature [10]. When searching for a solution in general,
the order of smoothness is unknown. Further, the optimal choice of the regular-
ization coefficient would depend on the target function. In order to tune these
unknown “parameters” in regression one tries different smoothness orders (this
corresponds to choosing the penalty term) with different regularization coeffi-
cients and choose the one giving the best empirical error on a hold-out set. The
same procedure (though is quite expensive) can be used with fitted Q-iteration.
This leads to estimates whose order of rate of convergence is essentially optimal.
Further, the convergence rate will scale with the actual roughness, Pen(TQk),
of the target function.

Optimizing over a Sobolev-space is a particular case of optimization in a
reproducing kernel Hilbert space (RKHS). The latter can be accomplished in a
computationally feasible way if one has access to the Mercer kernel function k
underlying the RKHS H and sets Pen(Q) to be the norm of Q in H [20]. This
way we obtain

Qk+1 = argmin
Q∈H

1
Mk

Nk+Mk−1∑
i=Nk

[
Ri + γmax

a′∈A
Qk(X ′

i, a
′)−Q(Xi, Ai)

]2 + λ ‖Q‖2H .

(2)

According to the Representer Theorem (see, e.g., Theorem 4.2 in [20]), any
solution to Eq. (2) is the sum of kernels centered on the observed samples: i.e.,

Q(x, a) =
Nk+Mk−1∑

i=NK

αi−Nk+1k
(
(Xi, Ai), (x, a)

)
,

2 Sobolev-spaces generalize Hölder spaces, which in turn put constraints on the point-
wise smoothness of functions. In particular, Sobolev-spaces allow functions which are
only almost everywhere differentiable. Thus, they can be useful for control problems
where value-functions often have ridges.

Regularized Fitted Q-Iteration: Application to Planning 61

where α = (α1, . . . , αMk
)� are the coefficients that must be determined. Let us

assume that Qk was obtained previously in a similar form:

Qk(x, a) =
Nk−1+Mk−1∑

i=Nk−1

α
(k)
i−Nk−1+1k

(
(Xi, Ai), (x, a)

)
,

and let us collect the coefficients in the expansion of Qk into a vector α(k) ∈
RMk−1 . Replacing Q in Eq. (2) by its expansion and using RKHS properties, we
get

α(k+1) = argmin
α∈RMk

1
Mk

∥∥∥rk + γK+
k α(k) −Kkα

∥∥∥2
+ λα�Kkα, (3)

with Kk ∈ RMk×Mk , K+
k ∈ RMk×Mk−1 ,

[Kk]ij = k
(
(Xi−1+Nk

, Ai−1+Nk
), (Xj−1+Nk

, Aj−1+Nk
)
)
,

[K+
k]ij = k

(
(X ′

i−1+Nk
, A

(k)
i−1+Nk

), (Xj−1+Nk−1 , Aj−1+Nk−1)
)
,

where A(k)
j = argmaxa∈AQk(X ′

j , a), and rk = (RNk
, . . . , RNk+Mk−1)�. Solving

Eq. (3) for α we obtain

α(k+1) = (Kk +MkλI)−1(rk + γK+
k α(k)).

The computational complexity of iteration k with a straightforward implemen-
tation is O(M3

k) as it involves the inversion of a matrix. When data is reused
between the iterates (Nk = 1,Mk = N) only one matrix inversion is necessary
as Kk becomes independent of k. However, the total cost as compared when
Mk = N/K and when we do K iteration is K2-times more. Using fast ap-
proximate inversion techniques one may get the best of both worlds: Cheaper
execution and better use of the samples. In any ways, what remains is to under-
stand how the number of samples influences the quality of the solutions. This is
what we study in the next two sections.

4 Error Propagation

In order to analyze how the imperfect fitting procedure influences the final error
it is customary to rewrite Fitted Q-iteration in the form

Qk+1 = TQk − εk, k ≥ 0,
ε−1 = Q∗ −Q0.

(4)

Note that these equations define the error sequence εk: εk : X × A → R, εk =
TQk − Qk+1. The “initial error function”, ε−1, is introduced for the sake of
simplifying some expressions that will follow.

The question studied in this section is how the errors {εk} influence the per-
formance of the policy greedy w.r.t. QK (K > 0 is the number of iterations in

62 A.m. Farahmand et al.

the algorithm; see Fig. 1). The idea is that the regression procedure controls the
size of the error functions εk, hence it must be possible to obtain good policies
eventually, provided that we can show that if the functions εk are “small” in
a sense to be specified below then the final error is also small. For k ≥ 0 let
πk be a greedy policy w.r.t. Qk: πk = π̂(·;Qk). With this notation our goal is
to bound the norm of V ∗ − V πK ≥ 0. In order to arrive at such a bound we
need the definition of discounted-average concentrability. The motivation for the
definition is that we need to relate the norm of errors under ν (the distribution
underlying the samples) to the norm ρ chosen by the user (which could be e.g.
the uniform distribution).

Definition 1 (Discounted-average Concentrability of Future-State Dis-
tributions). Given ρ ∈M(X), ν ∈M(X×A), m ≥ 0 and an arbitrary sequence
of stationary policies {πm}m≥1 let ρπ1,...,πm ∈ M(X × A) denote the (future)
state-action distribution obtained when the first state is obtained from ρ and then
we follow policy π1, then policy π2, . . ., then πm−1 at which step a random action
is selected with πm. Define

cρ,ν(m) = sup
π1,...,πm

∥∥∥∥d(ρπ1,...,πm)
dν

∥∥∥∥
∞
,

with the understanding that cρ,ν(m) = ∞ if the future state-action distribu-
tion ρπ1,...,πm is not absolutely continuous w.r.t. ν. The first-order k-shifted
(k ≥ 0, k ∈ N) discounted-average concentrability of future-state distributions
is defined by

C(1,k)
ρ,ν = (1− γ)

∞∑
m=0

γmcρ,ν(m+ k).

Similarly, the second-order k-shifted (k ≥ 0, k ∈ N) discounted-average concen-
trability of future-state distributions is defined by

C(2,k)
ρ,ν = (1− γ)2

∞∑
m=0

mγm−1cρ,ν(m+ k).

In general cρ,ν(m) diverges to infinity as m→∞. However, if the rate of diver-
gence of cρ,ν(m) is sub-exponential, i.e., if Γ = lim supm→∞ 1/m log cρ,ν(m) ≤ 0
then C

(i,j)
ρ,ν will be finite. Note that the definition given here is not identical

to the previous similar definition by Munos and Szepesvári [16]. The main dif-
ference is that unlike in [16], here ρ is a distribution over the states and ν is a
distribution over state-action pairs. The reason is that here we work with action-
value functions, while in [16] state-value functions were considered. Note that
it is possible to avoid changing this definition (as it was done in Antos et al.
2), but the price is that the bounds will be more conservative. Interestingly, the
bounds here avoid the supremum norm arguments used by Antos et al. [2] and
are thus less conservative. Note, however, that the arguments presented here do
not extend to continuous action spaces studied in [2].

Regularized Fitted Q-Iteration: Application to Planning 63

The main result of this section is the following theorem that bounds the loss
of using the learned policy πK as a function of the losses of the solutions of the
regression problems solved while running the algorithm:

Theorem 1 (Lp-bound). Consider a discounted MDP with a finite number of
actions. Let p ≥ 1. Assume that Qk and εk satisfy (4) and that πk is a policy
greedy w.r.t. Qk. Fix K > 0. Define E0 = ‖ε−1‖∞ and εK = max0≤k≤K ‖εk‖p,ν .
Then,

‖V ∗ − V πK‖p,ρ ≤
2

(1 − γ)2
[
γ

K
p E0 +

(
(1− γ) (C(1,1)

ρ,ν)
1
p + γ (C(2,1)

ρ,ν)
1
p

)
εK

]
.

5 L2-Bound for Regularized Kernel-Based Regression

In this section we assume that Qk+1 is obtained by solving the RKHS regular-
ization problem of Eq. (2). By using Prop. 3 of Zhou [23], the following gener-
alization of Theorem 21.1 of Györfi et al. [10] to arbitrarily RKHS with smooth
kernel functions can be obtained. The result is for the case when X = [0, 1]d, but
can be generalized to other compact spaces with “regular” boundaries relatively
easily.

Theorem 2. Assume that X = [0, 1]d, k ∈ Lip∗(s, C(X ,X)) and Qk is such
that TQk ∈ H(= Hk).3 Furthermore, (for the sake of simplicity) assume that all
functions involved in the regression problem (the reward function, Qk, and the
result of the optimization problem Qk+1) are bounded by some constant L > 0.4

Let Qk+1 be the solution of (2) with some λ > 0. Then

‖Qk+1 − TQk‖2ν ≤ 2λ ‖TQk‖2H +
c1L

4

Mkλd/s
+
c2 log(1/δ)
MkL4

holds with probability (w.p.) at least 1− δ, for some c1, c2 > 0.

Note the trade-off in the bound: increasing λ increases the first term, but de-
creases the second. The optimal choice strikes a balance between these two terms.
This choice will depend on the number of samples Mk, the complexity of the
target function TQk measured by ‖TQk‖2H, the dimension d of X , and the degree
of smoothness measured by s. With λ = cM

−1/(1+d/s)
k the rate of convergence is

O(M−1/(1+d/s)
k), showing that smoother problems give rise to a better rate – an

intuitive result. To find the best λ in a data-dependent manner, one may set up
a grid of λs, for any given λ generate a new independent sample and choose the
λ that gives the lowest risk estimated on the new sample. If the same λ is used
in all iterations then a good value can be selected by again setting up a grid and
for any value of λ estimate the performance of the obtained policy by following
it from a set of start states generated from ρ and then pick the best policy.
3 For the definition of the generalized Lipschitz space Lip∗ see Zhou [23].
4 When this does not hold, a truncation argument is needed, but the result would

essentially be left unchanged.

64 A.m. Farahmand et al.

As an immediate corollary of this result and Theorem 1 we get the following
result, assuming that in each iteration we are using the same regularization
parameter.

Corollary 3 (L2-bound). Assume that the conditions of the previous theorem
hold and that we use the same regularization parameter and the same number of
samples in each iteration: M1 = M2 = . . . = MK. Let πK be greedy w.r.t. the
Kth iterate, QK , B = max0≤k≤K

∥∥T kQ0
∥∥2
H. Then, for any δ > 0,

‖V ∗ − V πK ‖ρ ≤ 2
(1 − γ)2

"
γ

K
2 ‖ε−1‖∞ +

“
(1 − γ)(C(1,1)

ρ,ν)
1
2 + γ(C(2,1)

ρ,ν)
1
2

” »
c1λB +

c2L
4

M1λd/s
+

c3 log(K/δ)
M1L4

–1/2
#

holds w.p. at least 1− δ for some universal constants c1, c2, c3 > 0.

Note that by choosing λ = cM
−1/(1+d/s)
1 the second term is made converging to

zero with M1 → ∞ at a rate O(M−1/(2(1+d/s))
1), corresponding to the optimal

regression rate for smoothness order s/2. On the other hand, by choosing larger
K, one can make the first term as small as desired.

6 Illustration

In this section, we use a simple illustrative problem that we call the “sinus
world” to investigate the behavior of the proposed algorithm. The “sinus world”
is designed so as to make it is easy to illustrate the role of the choice of the
RKHS, the regularization coefficient, the relation of it to the wiggliness of the
reward function or how the noise in the dynamics or that in the observed rewards
influences the difficulty of the problem. The state space is X = [−5, 5] and the
problem is to navigate an agent to where rewards are large. The agent can move
left or right, its actions are noisy and the boundaries of the state space are
absorbing. The discount factor is γ = 0.8. The reward function is a sine function
with some frequency ω. For the details see Table 1.

We used the regularized fitting procedure of Eq. (2) and the kernel function
k
(
(x, a), (x′, a′)

)
= k(x, x′) I{a=a′}, where the state kernel is Gaussian k(x, x′) =

exp
(
− ‖x− x′‖2 /(2σ2

k)
)

with σ2
k = 0.1.5

In order to understand what makes the problem difficult for our procedure re-
member that we use an RKHS norm as the penalty in our fitting procedure. Thus,
we expect performance to deteriorate for problems where the target functions,
TQk, have a larger RKHS norm. With our choice of the kernel, for a function
f : X → R we have ‖f‖2H ∝

∫
|f̂(ω)|2eσ2

kωdω, where f̂ is the Fourier transform of
f . We see that energies at higher frequencies get exponentially boosted, making
the norm to prefer functions with low high frequency content. Now, our target
5 I{E} denotes the indicator function: I{L} = 1 if and only if L is true and I{L} = 0,

otherwise.

Regularized Fitted Q-Iteration: Application to Planning 65

Table 1. The “sinus world”. The default parameters are ω = 4, ση = 0.05 and σr = 1.

Initial State: x0 = −5

Transitions: xt+1 =

8><>:
x̂t+1 x̂t+1 ∈ (−5, +5),
−5 x̂t+1 ≤ −5,

+5 x̂t+1 ≥ +5.

x̂t+1 = xt + at + ηt ; ηt ∼ N (0, σ2
η), ; at ∈ {−0.2, 0.2}

Rewards: r(xt) = sin(ωxt) + ξt, ξt ∼ N (0, σ2
r)

functions have the form TQ = r+γPMQ, where Q ∈ H, M : B(X×A) → B(X)
is an operator defined by (MQ)(x) = maxa∈AQ(x, a), and P is the Markov ker-
nel underlying the dynamics. Operator M generally increases the high frequency
content of its input, but operator P (due to the noise of the dynamics) reduces it.
Thus, a noisier dynamics helps to reduce ‖TQ‖H. However, a noisier dynamics
increases the sample variance (i.e., decreases the signal-to-noise ratio), hence we
cannot conclude that a noisier dynamics generally helps. On the other hand, the
role of the reward function r is largely clear: ‖TQ‖H can be expected to scale
with ‖r‖H. For our problem, r̂(ω) is a Dirac function centered at ω. Thus, a
larger ω should give rise to more difficult problems. Another source of difficulty
is the noise in the observed rewards. This noise does not decrease ‖TQ‖H, but
only decreases the signal-to-noise ratio.

When solving (2), for the sake of computational efficiency and to increase
numerical stability, we used sparsification. In particular, we used the method of
Engel et al. [6] which selectively adds state-action pairs to a set of dictionary
state-action pairs, which are in turn used as a basis for approximating the full
solution.6 The base distribution used to sample the states Xi is uniform. In all
cases we used K = 50 iterations and the full dataset in all iterations (N1 = . . . =
NK = 1,M1 = . . . = Mk = N).

Performance is evaluated by the relative error, maxa∈A
(‖Q∗(x,a)−QK(x,a)‖2

‖Q∗(x,a)‖∞

)
.

Here the L2 norm is estimated on a grid of 1000 points evenly spaced in the state
space. An approximation to the optimal action-value function Q∗ is calculated
by discretizing the problem using the same regular grid.

Fig. 2(a) (Fig. 2(b)) show the performance of our algorithm as a function
of the regularization coefficient λ, for three values of ω (resp., σr). All curves
are averaged over 30 independent runs of the experiments (across algorithms
the same random seeds were used). In Fig. 2(a) the results were obtained using

6 Sparsification limits the complexity of the fitted functions and consequently acts as
implicit regularization, thus reducing the chance of overfitting. This is also apparent
from the stability of the curves in the following figures as λ → 0.

66 A.m. Farahmand et al.

(a) (b)

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.004

0.005

0.006

0.007

0.009

0.01

0.015

λ (regularization coefficient)

re
la

ti
v
e

 e
rr

o
r

ω = 4

ω = 8

ω = 12

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.002

0.005

0.008

0.01

λ (regularization coefficient)

re
la

ti
v
e

 e
rr

o
r

σ
r
 = 0.25

σ
r
 = 0.5

σ
r
 = 1

Fig. 2. (a) Effect of changing the reward frequency on the performance of our algo-
rithm. (b) Effect of adding noise to the reward function on the performance of our
algorithm.

2 2.5 3 3.5 4 4.5 5

0

1

2

3

4

5

state (x)

a
c
ti
o
n
−

v
a
lu

e
 f
u
n
c
ti
o
n
 (

Q
)

λ = 10−6

λ = 10−2 optimal action−value

λ = 0.5

Fig. 3. The optimal action-value function (for the left action) and action-value func-
tions estimated by our algorithm for three values of λ and N = 200

N = 2000 samples, whereas in Fig. 2(b), the results were obtained using N =
1000 samples. On both figures the error bounds are standard error (standard
deviation divided by the square-root of the number of runs; here 30).

The results of Fig. 2(a) confirm that increasing the reward frequency increases
the generalization error. They also show that for each reward frequency there
exists a regularization coefficient λ that attains the minimum error. The mini-
mum is pronounced. Thus, with an appropriate choice of λ (which can be found
by e.g. using a hold-out set) significant saving in computation time is possible
as one needs less samples to achieve better results. The same conclusion holds
for the case when the noise of the observed rewards is varied (Fig. 2(b)).

In order to gain further insight into the behavior of the algorithm we plotted
the optimal action-value function for the left action along with the action-value

Regularized Fitted Q-Iteration: Application to Planning 67

functions found by our algorithm for three different values of λ (Fig. 3). In
this experiment, we used N = 200 samples. We see that when λ is too small
(λ = 10−6) the procedure overfits, while if λ is too large (λ = 0.5), underfitting
happens. Finally, an intermediate value (λ = 0.01) gives acceptable fits.

7 Discussion

In this paper we proposed to use penalized least-squares as the regression al-
gorithm in fitted Q-iteration for solving planning problems when a generative
model of the environment is available. The problem addressed is that in fitted
value iteration and other sample-based planning methods for small sample sizes
the function space has to be chosen not only to fit the MDP but also to control
over- or underfitting.

As one main contribution of the paper we analyzed the finite-sample perfor-
mance of the proposed procedure. Although finite-sample performance of fitted
value iteration has been considered earlier [1, 2], to the best of our knowledge,
this is the first work that addresses finite-sample performance of a regularized RL
algorithm and gives a concrete algorithm to implement it. The analysis presented
here builds on these previous works, but extends and improves them.

As future work, we plan to investigate fitted Q-iteration in multi-kernel sit-
uations (different kernel functions correspond to different smoothness classes).
Adapting to the situation when the data lies on a low dimensional sub-manifold
of the observation space or when certain variables are irrelevant calls for tech-
niques that allow parameterized kernel families. For such a situation ideas of
Srebro and Ben-David [21] could be useful. Feature selection could also be ad-
dressed by introducing an L1-penalty in a LASSO-like procedure (e.g., [5]). An-
other important research topic is to optimize the sample distribution. One idea
is to use the estimated action-value function while running the algorithm to
actively choose the most informative samples for the next iteration. It would
also be desirable to gain experience by applying the proposed method in some
realistic problems. Currently, one main limitation is that the procedure is quite
expensive to run.

Finally, let us note that even though the results of this paper are presented
for planning, the extension to the learning scenario when a good policy is to
be learned given a long, representative trajectory of some behavior policy looks
possible along the lines of the works [1, 2, 3].

References

[1] Antos, A., Szepesvári, C., Munos, R.: Value-iteration based fitted policy iteration:
learning with a single trajectory. In: IEEE ADPRL, pp. 330–337 (2007)

[2] Antos, A., Munos, R., Szepesvári, C.: Fitted Q-iteration in continuous action-
space MDPs. In: Advances in Neural Information Processing Systems 20, NIPS
2007 (in print, 2008)

68 A.m. Farahmand et al.

[3] Antos, A., Szepesvári, C., Munos, R.: Learning near-optimal policies with
Bellman-residual minimization based fitted policy iteration and a single sample
path. Machine Learning 71, 89–129 (2008)

[4] Bertsekas, D.P., Shreve, S.E.: Stochastic Optimal Control (The Discrete Time
Case). Academic Press, New York (1978)

[5] Bunea, F., Tsybakov, A., Wegkamp, M.: Sparsity oracle inequalities for the lasso.
Electronic Journal of Statistics 1, 169–194 (2007)

[6] Engel, Y., Mannor, S., Meir, R.: The kernel recursive least squares algorithm.
IEEE Transaction on Signal Processing 52(8), 2275–2285 (2004)

[7] Engel, Y., Mannor, S., Meir, R.: Reinforcement learning with Gaussian processes.
In: ICML 2005: Proceedings of the 22nd international conference on Machine
learning, pp. 201–208. ACM, New York (2005)

[8] Ernst, D., Geurts, P., Wehenkel, L.: Tree-based batch mode reinforcement learn-
ing. Journal of Machine Learning Research 6, 503–556 (2005)

[9] Farahmand, A.M., Ghavamzadeh, M., Szepesvári, C., Mannor, S.: Regularized
policy iteration. In: Advances in Neural Information Processing Systems 21, NIPS
2008 (to appear, 2008)

[10] Györfi, L., Kohler, M., Krzyżak, A., Walk, H.: A distribution-free theory of non-
parametric regression. Springer, New York (2002)

[11] Jung, T., Polani, D.: Least squares SVM for least squares TD learning. In: ECAI,
pp. 499–503 (2006)

[12] Kearns, M., Mansour, Y., Ng, A.Y.: A sparse sampling algorithm for near-optimal
planning in large Markovian decision processes. In: Proceedings of IJCAI 1999,
pp. 1324–1331 (1999)

[13] Lagoudakis, M.G., Parr, R.: Reinforcement learning as classification: Leveraging
modern classifiers. In: ICML 2003, pp. 424–431 (2003)

[14] Loth, M., Davy, M., Preux, P.: Sparse temporal difference learning using LASSO.
In: IEEE International Symposium on Approximate Dynamic Programming and
Reinforcement Learning (2007)

[15] Mannor, S., Menache, I., Shimkin, N.: Basis function adaptation in temporal dif-
ference reinforcement learning. Annals of Operations Research 134, 215–238 (2005)

[16] Munos, R., Szepesvári, C.: Finite-time bounds for fitted value iteration. Journal
of Machine Learning Research 9, 815–857 (2008)

[17] Ng, A.Y., Jordan, M.: PEGASUS: A policy search method for large MDPs and
POMDPs. In: Proceedings of the 16th Conference in Uncertainty in Artificial
Intelligence, pp. 406–415 (2000)

[18] Ormoneit, D., Sen, S.: Kernel-based reinforcement learning. Machine Learning 49,
161–178 (2002)

[19] Parr, R., Painter-Wakefield, C., Li, L., Littman, M.L.: Analyzing feature genera-
tion for value-function approximation. In: ICML, pp. 737–744 (2007)

[20] Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)
[21] Srebro, N., Ben-David, S.: Learning bounds for support vector machines with

learned kernels. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS, vol. 4005,
pp. 169–183. Springer, Heidelberg (2006)

[22] Xu, X., Hu, D., Lu, X.: Kernel-based least squares policy iteration for reinforce-
ment learning. IEEE Trans. on Neural Networks 18, 973–992 (2007)

[23] Zhou, D.-X.: Capacity of reproducing kernel spaces in learning theory. IEEE Trans-
actions on Information Theory 49, 1743–1752 (2003)

A Near Optimal Policy for Channel Allocation
in Cognitive Radio

Sarah Filippi1, Olivier Cappé1, Fabrice Clérot2, and Eric Moulines1

1 LTCI, TELECOM ParisTech and CNRS, 46 rue Barrault, 75013 Paris, France
{filippi,cappe,moulines}@telecom-paristech.fr

2 France Telecom R&D, 2 avenue Pierre Marzin, 22300 Lannion, France
fabrice.clerot@orange-ftgroup.com

Abstract. Several tasks of interest in digital communications can be
cast into the framework of planning in Partially Observable Markov De-
cision Processes (POMDP). In this contribution, we consider a previously
proposed model for a channel allocation task and develop an approach
to compute a near optimal policy. The proposed method is based on
approximate (point based) value iteration in a continuous state Markov
Decision Process (MDP) which uses a specific internal state as well as an
original discretization scheme for the internal points. The obtained re-
sults provide interesting insights into the behavior of the optimal policy
in the channel allocation model.

1 Introduction

Partially Observable Markov Decision Processes (POMDP) have been widely
used for planning problems with uncertainty about the current state. POMDP
generalize the standard Markov Decision Processes (MDP) in allowing for a
partial observation of the state either due to the presence of observation noise or
to the fact that only a part of the state vector is actually observed (censoring)
[1,2,3,4]. Such diverse causes of the partial observation lead to many different
solutions tailored to the problem at hand: although the general solution is known
to be amenable to a continuous state MDP using the belief state formalism
[5,6,7], this usually does not lead to tractable solutions.

In the following, we develop and study the performance of a POMDP approach
to channel allocation in a cognitive radio system where censoring occurs due to
the constraints that only some channels can be sensed at a given time. We
compare the performance of the proposed policy with that of the sub-optimal
approach introduced by [8] for this model.

The outline of the paper is as follows: Sect. 2 describes the channel allocation
problem and casts it into the POMDP formalism; Sect. 3 describes our approach
towards a near-optimal policy; Sect. 4 presents our experimental results.

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 69–81, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

70 S. Filippi et al.

2 Modeling the Channel Allocation Problem for
Cognitive Radio

2.1 Channel Allocation

We briefly sketch below the description of this problem as given in [8]: con-
sider a network consisting of N independent channels, with bandwidths Bi, for
i = 1, . . . N . These N channels are licensed to a primary network whose users
communicate according to a synchronous slot structure. At each time slot, chan-
nels are either free or occupied (see Fig. 1). The traffic statistics of the primary
network are supposed to be known and modeled as a discrete-time Markov chain
with known transition probabilities.

�����
�����
�����
�����

�����
�����
�����
�����

����������
����������
����������
����������

����������
����������
����������
����������

�
�
�
�

�
�
�
�

����������
����������
����������
����������

����������
����������
����������
����������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�
�
�
�

�
�
�
�

����������
����������
����������
����������

����������
����������
����������
����������

�
�
�
�

�
�
�
�

...

Slot
1

X1(2) = 1

X1(N) = 0

X1(1) = 0

Slot
2

X2(1) = 1

X2(2) = 0

X2(N) = 0

Slot
3

X3(1) = 0

X3(2) = 1

X3(N) = 1

Slot
4

X4(1) = 0

X4(2) = 0

X4(N) = 0

Slot
5

X5(1) = 1

X5(2) = 1

X5(N) = 0

t

t

bandwidth: B(1)

bandwidth: B(N)

Channel 1

Channel N

Channel 2
bandwidth: B(2)

t

Fig. 1. Representation of the primary network

Consider now a secondary user seeking opportunities of transmitting in the
free slots of these N channels without disturbing the primary network, that is
to say without transmitting informations in occupied channels. Moreover, this
secondary user has not full knowledge of the availability of each channel. In each
slot, the secondary user chooses a set of L1 channels to sense and transmits in
L2 channels among the L1 observed channels. The aim of the secondary user
is to leverage this partial observation of the channels so as to maximize its
throughput.

2.2 POMDP Modeling

This problem can be modeled by a POMDP. At the beginning of the slot t, the
network state is [Xt(1), . . . , Xt(N)]′, where Xt(i) is equal to 0 when the channel
i is occupied and 1 when the channel is idle. The states of different channels are
assumed to be independent, i.e. for i �= j,Xt(i) andXt(j) are independent. Then,
the secondary user selects a set of L1 channels to sense. This choice corresponds
to an action At = [At(1), . . . , At(N)]′, where the component At(i) = 1 if the
i-th channel is sensed and At(i) = 0 otherwise. Since L1 channels are observed

A Near Optimal Policy for Channel Allocation in Cognitive Radio 71

at each time slot,
∑N

i=1At(i) = L1. The observation is an N -dimensional vector
[Yt(1), . . . , Yt(N)]′ such that, for the i-th channel:

Yt(i) =

{
Xt(i) if At(i) = 1
� otherwise

(1)

where � is an arbitrary number not in {0, 1}. Based on this observation, the user
chooses L2 channels to access among the L1 observed channels. He then receives
a reward Rt which depends on the action At, the observation Yt and the choice
of the channels to access.

At the beginning of the next time slot, the network state is Xt+1 which only
depends on the network state Xt at the beginning of the slot t. Note that the
state transition probability does not depend on the actions. Actually, since the
secondary user does not disturb the primary network, actions do not affect the
state transitions. Assume that the marginal distribution of the state transitions
is known. Specifically, channel i transits from state 0 (unavailable) to state 1
(available) with probability α(i) and stays in state 1 with probability β(i). In the
following, we consider these distributions as being time-homogeneous, potentially
restricting our study to a time period where this assumption holds true.

The reward gained at each time slot is equal to the aggregated bandwidth
available. Therefore, after observing L1 channels, the optimal choice for the
secondary user is to send through up to L2 idle observed channels chosen by
decreasing bandwidth order and the reward is the sum of those bandwidths.
Including (possibly bandwidth-dependent) collision penalties to the reward al-
lows to develop a similar approach if the secondary user must choose exactly L2
channels to transmit among the L1 observed channels, hence possibly transmit-
ting through busy channels if there are less than L2 idle observed channels. If
we choose to transmit in every observed channels (i.e. L2 = L1), the reward is
exactly equal to

Rt = R(Xt, At) =
N∑

i=1

B(i)�{At(i)=1,Xt(i)=1} − c�{At(i)=1,Xt(i)=0} ,

where c is the collision penalty. The problem therefore reduces to the choice
of the L1 channels to be observed and the secondary user seeks a policy π to
maximize the discounted expected reward:

Eπ

[∞∑
t=1

γt−1R(Xt, At)

]
, 0 < γ < 1 .

2.3 Link with the Restless Multi-armed Bandit Framework

This model may be seen as an instance of the notoriously difficult restless multi-
armed bandit problem [9]. The multi-armed bandit problem (MAB) is one of
the most fundamental problem in stochastic decision theory. Consider a bandit

72 S. Filippi et al.

with N independent arms. For simplicity, assume that each arm may be in one
of two states {0, 1}. At any time step, the player can play L1 arms. If arm i
in state Xt(i) is played, it transitions in a Markovian fashion to state Xt+1(i)
and yields a reward Rt(i). Contrary to the stochastic MAB problem in which
the states of the arms which are not played stay the same, in the restless bandit
problem, the states of all the arms vary in a Markovian fashion. The channel
allocation problem may be seen as a restless bandit problem, since the states of
the channel evolve according to the dynamic imposed by the primary network
whether the channel is sensed or not.

In [10], the computational complexity of the problem has been studied: the
authors established that the planning task in restless bandit model is PSPACE-
hard. Nevertheless, some recent research has put forward sub-optimal index
strategies [11,12]. An index strategy consists in separating the optimization task
into N channel-specific problems following the idea originaly proposed by Whit-
tle [9].

3 Near Optimal Policy Formulation

3.1 Internal State Definition

In a POMDP, the state of the underlying Markov process is unknown - here the
secondary user only observes a limited number of channels at any given time.
To choose which channels to observe, the secondary user has to construct an
internal state that summarizes all past decisions and observations. A standard
approach to solving a POMDP is to introduce the state probability distribution
(belief state), which is a 2N -dimensional vector Λt = [Λt(1), . . . , Λt(2N)]′ such
that

Λt(x) = P [Xt = x |A1:t, Y1:t, Λ0] , x ∈ X
def= {0, 1}×N .

We define Λ0 as the initial state probability. It has been shown that the belief
vector is a sufficient internal state [5] i.e.

– there exists a deterministic function such as Λt+1 = τ(Λt, Yt+1, At+1) ,
– for every function f ≥ 0 , E [f(Xt) |A1:t, Y1:t, Λ0] = E [f(Xt) |Λt] .

In channel allocation, the independence between the channels can be exploited
to construct a N -dimensional sufficient internal state. Let It = [It(1), . . . , It(N)]′

where It(i) is the probability, conditioned on the sensing and decision history,
that channel i is available at the beginning of slot t:

It(i) = P [Xt(i) = 1 |A1:t, Y1:t, I0] , i ∈ {1, . . . , N} , (2)

and I0(i) = P(X0(i) = 1) .

Proposition 1. If the initial probability Λ0 can be written as a product of the
marginal probabilities i.e. ∀x ∈ X , Λ0(x) =

∏N
i=1 I0(i)

x(i)(1−I0(i))1−x(i) , then,
for all x ∈ X,

Λt(x) =
N∏

i=1

It(i)x(i)(1− It(i))1−x(i) , (3)

A Near Optimal Policy for Channel Allocation in Cognitive Radio 73

and there exists a function τ : I × A× Y → I such that, for each component i,

It+1(i) = τ(It, at+1, yt+1)(i)

=
[
�yt+1(i)=1

]at+1(i) [It(i)β(i) + (1 − It(i))α(i)]1−at+1(i) . (4)

This proposition shows that the internal state defined in (2) is a sufficient internal
state.

3.2 Value Function and Bellman Equation

It is well known that the optimal policy for the POMDP can be derived from
the optimal policy, i.e. the choice of actions maximizing the discounted expected
reward, in an equivalent MDP where the sufficient internal state of the POMDP
plays the role of the state variable.

Let V π the value function of the policy π:

V π(I) = Eπ

[∞∑
t=1

γt−1Rt

∣∣∣∣∣ I0 = I

]
,

where γ is the discount factor. There exists a deterministic stationary policy
π∗ = (π∗t)t which is optimal [13]. At each time t, the decision rule π∗t = π∗0 is a
function from the internal state space I to the action space A such that

V π∗
= V ∗ def= max

π∈Π
V π ,

where Π is the set of the deterministic stationary policy. The optimal value
function V ∗ satisfies the Bellman equation:

V ∗(I) = max
a∈A

⎧⎨⎩ρ(I, a) + γ
∑
y∈Y

M(I, a; y)V ∗(τ(I, a, y))

⎫⎬⎭ ,

where ρ(I, a) is the expected one-step reward given that the internal state is I
and the action is a, and M(I, a; y) is the observation probability conditioned by
the action and the internal state. More explicitly, for internal state It = I and
action At+1 = a,

ρ(I, a)=
∑

i,a(i)=1

{(I(i)β(i)+(1−I(i))α(i)}Bi−{I(i)(1−β(i))+(1−I(i))(1−α(i))}c ,

and M(I, a; y) =
∏N

i=1Mi(I, a; y) where

Mi(I, a; y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
I(i)β(i) + (1− I(i))α(i) if a(i) = 1 and y(i) = 1
I(i)(1− β(i)) + (1 − I(i))(1− α(i)) if a(i) = 1 and y(i) = 0
1 if a(i) = 0 and y(i) = �

0 otherwise

.

74 S. Filippi et al.

Note that Mi(I, a; y) depends only on the i-th component of I, a, y, α and β.
An optimal policy, named the greedy policy, can be deduced from the optimal
value function V ∗ by

∀I ∈ I , π∗0(I) = argmax
a∈A

⎧⎨⎩ρ(I, a) + γ
∑
y∈Y

M(I, a; y)V ∗(τ(I, a, y))

⎫⎬⎭ .

The value iteration algorithm is generally used to compute V ∗: given an initial
value function V0, we compute iteratively Vn as follows

Vn(I) = max
a∈A

⎧⎨⎩ρ(I, a) + γ
∑
y∈Y

M(I, a; y)Vn−1(τ(I, a, y))

⎫⎬⎭ , ∀n ≥ 1 .

The optimal value function is then obtained as the unique fixed point of this
iteration. However, this algorithm is mostly of theoretical interest because the
set of internal states is infinite.

3.3 Discretizing the Internal State Space

A pratical solution is to restrict the set of internal points at which we will
compute the value function. Truncating the set of possible internal states clearly
induces some loss of efficiency, but, as shown below, it however allows to compute
a near-optimal policy. There exist many ways to choose the set of internal points
but we focus on a solution that takes into account the particular structure of
the internal state.

From eq. (4) it follows that for each observed channel i (i.e. such that At(i) =
1) the i-th component of the intenal state It(i) is either equal to 0 or 1 ac-
cording to the state of the channel. Since L1 channels are observed at each
slot, L1 components of the internal state are either 0 or 1. In addition, if
channel i is not observed, the i-th component of the internal state depends
on the last oberved state of the channel. More precisely, for each channel i,
It(i) ∈ {0, 1, ν(i), I0(i), p0

k(i), p1
k(i), k > 0}, where ν(i) is the stationary proba-

bility that the channel i is idle (in the following, we assume that I0 = ν) and
denote p0

k(i) (respectively p1
k(i)) the probability that the channel i is idle given

that we haven’t observed it for k steps and that the last observed state was 0
(respectively 1). The probabilities p0

k(i) and p1
k(i) satisfy the following recursions:

p0
k(i) =P [Xt(i) = 1 |Xt−k(i) = 0, At−k+1(i) = · · · = At(i) = 0]

=

{
α(i) if k = 1
p0

k−1(i)β(i) + (1− p0
k−1(i))α(i) otherwise

,

p1
k(i) =P [Xt(i) = 1 |Xt−k(i) = 1, At−k+1(i) = · · · = At(i) = 0]

=

{
β(i) if k = 1
p1

k−1(i)β(i) + (1− p1
k−1(i))α(i) otherwise

.

A Near Optimal Policy for Channel Allocation in Cognitive Radio 75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

I(1)

I(
2)

Fig. 2. Representation of all the internal states reachable from the initial internal state
I0 (all the squares) and the set ĨI0,K (the grey squares) for a two-channel model and
one channel observed once. We used α = (0.1, 0.8)′, β = (0.9, 0.5)′, and K = 4. I(1)
and I(2) are respectively the first and the second components of the internal state I .

The set of the internal states ĨI0,K that we construct is composed of all internal
points reachable in K steps or less from the initial internal state I0. We add
to this set the stationary probabilities. These internal points are N -dimensional
vectors such that It(i) ∈ {0, 1, ν(i), p0

k(i), p1
k(i), 0 < k ≤ K} subject to the

constraint that It has exactly L1 components equals to 0 or 1. The constant K
is set so that the size of ĨI0,K remains small enough to keep the computational
requirements under a pre-defined level. The set ĨI0,K is displayed in Fig. 2 for a
two-channel model and L1 = 1. Note that, in this case, all the elements of ĨI0,K

have a component equal to 0 or 1 and that, for a fixed component, the internal
points cluster around the stationary probability. The set ĨI0,K may be seen as
a kind of adapted grid.

3.4 Algorithm

We can now compute the optimal value function based on the set of internal
points ĨI0,K using the value iteration algorithm. Given an initial value function
V0, we compute iteratively Vn as follows

∀I ∈ ĨI0,K , Ṽn+1(I) = max
a∈A

⎧⎨⎩ρ(I, a) + γ
∑
y∈Y

M(I, a; y)Ṽn(τ̃ (I, a, y))

⎫⎬⎭ ,

where τ̃ : ĨI0,K × A× Y → ĨI0,K is such that

τ̃(I, a, y) = η(τ(I, a, y)) =

{
τ(I, a, y) if τ(I, a, y) ∈ ĨI0,K

argminI′∈I d(I ′, τ(I, a, y)) otherwise
,

76 S. Filippi et al.

where d is the distance defined by

d(I, I ′) =

{∑N
j=1 |I(j)− I ′(j)| if ∀i s.t. I(i) ∈ {0, 1}, I(i) = I ′(i).

∞ otherwise
.

The near optimal policy we propose consists in choosing the greedy action with
respect to the near optimal value function Ṽ ∗ = limn→∞ Ṽn. The method is
summarized algorithm 1. The function Ipoints computes a set of internal states
as explained in the former section.

Algorithm 1. Algorithm to compute a near optimal policy
Require: N , L1, α, β, V0, ε, γ
1: ĨI0,K = Ipoints(N, L1, α, β, K)
2: while ‖Ṽn − Ṽn+1‖2 > ε(1 − γ)/(2γ) do
3: for each I ∈ ĨI0,K do

Ṽn(I) = max
a∈A

{ρ(I, a) + γ
X
y∈Y

M(I, a; y)Ṽn−1(τ̃(I, a, y))}

4: end for
5: n=n+1;
6: end while
7: for each I ∈ ĨI0,K do

π∗
0(I) = argmax

a∈A

8<:ρ(It−1, a) + γ
X
y∈Y

M(It−1, a; Yt)Ṽ ∗(τ̃(It−1, a, Yt))

9=;
8: end for

3.5 Approximation Result

For this discretization scheme, it is possible to show the following theorem. The
proof is omitted for sake of brevity.

Theorem 1. For all I ∈ ĨI0,K, the error between the optimal value function V ∗

and the n-th approximate value function Ṽn is bounded:∣∣∣V ∗(I)− Ṽn(I)
∣∣∣ ≤ C1

∑
i,I(i)/∈{0,1}

|β(i)− α(i)|K

1− β(i) + α(i)
max{α(i), 1−β(i)}+C2

γn

1− γ ,

where C1 and C2 are the following constants

C1 =
maxi |β(i)− α(i)|

1− γmaxi |β(i)− α(i)|

(
max

i
|Bi + c|+ 2

γ

1− γ sup
I∈I,a∈A

|ρ(I, a)|
)
,

C2 = sup
I∈I,a∈A

|ρ(I, a)| .

A Near Optimal Policy for Channel Allocation in Cognitive Radio 77

The bound decreases when the discretization parameter K increases, at a faster
rate than the bound obtained for generic POMDP [14] who do not exhibit the
special structure presented in Sec. 3.1. Note that this decreasing rate depends on
|β(i)− α(i)| for i = 1, . . . , N . The practical impact of K will be discuss further.

4 Simulation Results

In this section, we present some experimental results. Particularly, we compare
the performance of the proposed policy with that of the sub-optimal approach
introduced by [8], which consists in choosing the action that maximizes the
expected one-step reward:

At(I) = argmax
a

ρ(I, a) = argmax
a

E [Rt |At = a, It−1 = I] .

We will refer to this choice of action as the 1STEP-strategy. In addition, the
strategy we propose will be noted NOPT-strategy. Except when noted otherwise,
we used γ = 0.9 and K = 10.

For clarity, the results are presented in the two-channel case, assuming that
these channels have the same bandwidth Bi = 1, for i = 1, 2. At each time
slot, the secondary user observes one channel and accesses to it if it is idle. We
will use different values of the transition probabilities α and β. We are specially
interested in networks where some channels are persistent or very fluctuating
since the NOPT-strategy will be able to take advantage of it. In the scenario 1,
the state of the first channel remains unchanged with a large probability, i.e.
1 − α(1) = β(1) = 0.9, and the probability that the second channel is idle
is the same if the channel was idle or occupied in the previous slot. We use
α(2) = β(2) = 0.51. In Fig. 3, we display for both of the studied strategies, the

0 10 20 30 40 50 60
0

0.3

0.6

0.9

t

oc
cu

pa
tio

n
pr

ob
ab

ili
ty

1STEP−strategy

I
t
(1)

ν(2)

0 10 20 30 40 50 60

1

2

t

ob
se

rv
ed

ch
an

ne
l

0 10 20 30 40 50 60
0

0.3

0.6

0.9

t

oc
cu

pa
tio

n
pr

ob
ab

ili
ty

NOPT−strategy

I
t
(1)

ν(2)

0 10 20 30 40 50 60

1

2

t

ob
se

rv
ed

ch
an

ne
l

Fig. 3. Top: evolution of the first component of the internal state It(1) (solid line)
compared to the stationary probability of the second channel ν(2) (doted line); bot-
tom: evolution of the observed channel; for the 1STEP-strategy (left plots) and the
NOPT-strategy (right plots) in the two-channel model with α = (0.1, 0.51)′ and
β = (0.9, 0.51)′.

78 S. Filippi et al.

0 10 20 30 40 50 60
0

0.3

0.6

0.9

t

oc
cu

pa
tio

n
pr

ob
ab

ili
ty

1STEP−strategy

I
t
(1)

ν(2)

0 10 20 30 40 50 60

1

2

t

ob
se

rv
ed

ch
an

ne
l

0 10 20 30 40 50 60
0

0.3

0.6

0.9

t

oc
cu

pa
tio

n
pr

ob
ab

ili
ty

NOPT−strategy

I
t
(1)

ν(2)

0 10 20 30 40 50 60

1

2

t

ob
se

rv
ed

ch
an

ne
l

Fig. 4. Top: evolution of the first component of the internal state It(1) (solid line)
compared to the stationary probability of the second channel ν(2) (doted line); bot-
tom: evolution of the observed channel; for the 1STEP-strategy (left plots) and the
NOPT-strategy (right plots) in the two-channel model with α = (0.9, 0.51)′ and
β = (0.1, 0.51)′.

evolution of the probability It(1) that the first channel is idle compared to the
stationary probability of the second channel ν(2) = 0.51. At the bottom, we
represent the channel actually observed at each time according to the policy. In
this first scenario, the stationary probability of the first channel (ν(1) = 0.5) is
lower than that of the second channel and the 1STEP-strategy always selects
the second channel. However, using the knowledge that the first channel stays
in the same state during long periods, the NOPT-strategy proposes a different
choice of actions sometimes observing the first channel and continuing to observe
it until it becomes busy.

In the second scenario, we use the same parameters except that the state of
channel 1 fluctuates strongly i.e. α(1) = 1−β(1) = 0.9. We can observe in Fig. 4
that the results are similar to scenario 1 for the 1STEP-strategy and that the
NOPT-strategy takes advantage of the fluctuating channel observing it when it
is idle.

In scenario 3, we study the situation where channel 2 has a stationary prob-
ability smaller than channel 1. We use α = (0.1, 0.49)′ and β = (0.9, 0.49)′. In
this case, the 1STEP-strategy is quite interesting (see Fig. 5): when channel 1
is idle with probability 1, it is sensed and accessed, and, as soon as it has been
seen to be occupied, channel 2 is observed while It(1) is lower than ν(2) = 0.49.

We simulate 200 trajectories of length 10000 and compute along each realiza-
tion the average rewards obtained using the random choice (RAND-strategy),
the 1STEP-strategy and the NOPT-strategy. We summarize these results for
the three scenarios discussed above in Tab. 1. Remark that the mean of the
average reward with the NOPT-strategy is always higher than the one with the
1STEP-strategy. For the first and the second scenarios, the average reward ob-
tained using the 1STEP-strategy is just a little higher than the one obtained
with the RAND-strategy which is around 0.5. This is not surprising since the

A Near Optimal Policy for Channel Allocation in Cognitive Radio 79

0 10 20 30 40 50 60
0

0.3

0.6

0.9

t

oc
cu

pa
tio

n
pr

ob
ab

ili
ty

1STEP−strategy

I
t
(1)

ν(2)

0 10 20 30 40 50 60

1

2

t

ob
se

rv
ed

ch
an

ne
l

0 10 20 30 40 50 60
0

0.3

0.6

0.9

t

oc
cu

pa
tio

n
pr

ob
ab

ili
ty

NOPT−strategy

I
t
(1)

ν(2)

0 10 20 30 40 50 60

1

2

t

ob
se

rv
ed

ch
an

ne
l

Fig. 5. Top: evolution of the first component of the internal state It(1) (solid line)
compared to the stationary probability of the second channel ν(2) (doted line); bot-
tom: evolution of the observed channel; for the 1STEP-strategy (left plots) and the
NOPT-strategy (right plots) in the two-channel model with α = (0.1, 0.49)′ and
β = (0.9, 0.49)′.

Table 1. The average reward obtained with the RAND-strategy, the 1STEP-strategy
and the NOPT-strategy for different values of α and β. The interquartile range is in
brackets.

α β RAND-strategy 1STEP-strategy NOPT-strategy
scenario 1 (0.1,0.51) (0.9,0.51) 0.505 (0.01) 0.51 (0.07) 0.646 (0.01)
scenario 2 (0.9,0.51) (0.1,0.51) 0.505 (0.06) 0.51 (0.07) 0.687 (0.06)
scenario 3 (0.1,0.49) (0.9,0.49) 0.497 (0.01) 0.578 (0.12) 0.636 (0.14)

1STEP-strategy selects at each slot channel 2 which is idle with probability 0.51
so the mean of the average reward is near 0.51. In the third scenario, the average
reward using 1STEP-strategy is better than in the scenarios 1 and 2 since the
policy is more complicated.

In the three first scenarios, one channel is either persistent or very fluctu-
ating and the NOPT-strategy takes advantage of these situations. When the
transitions probabilities α(i) and β(i) (i = 1, 2) are not close to 0 or 1, the
NOPT-strategy is still preferable to the 1STEP-strategy but the perfomance
gap between them is no very significant.

Finally, we observe the impact of the discretization parameter K on the
NOPT-srategy and the discount parameter γ on both strategies. We display
in Fig. 6 the average reward obtained in the first scenario using the NOPT-
strategy with differents values of K. We observe that even when there are few
internal points (here K lower than 5), the NOPT-strategy obtains good results.
Discretizing the internal state space with K larger than 5 has no impact on the
average reward. Note that for other values of transition probabilities α and β
(in particular if |β(i)− α(i)| is very close to 1), it can be necessary to use more
internal points.

80 S. Filippi et al.

0 5 10 15
0.605

0.61

0.615

0.62

0.625

0.63

0.635

0.64

0.645

0.65

K

A
ve

ra
ge

 R
ew

ar
d

Fig. 6. Average reward for the NOPT-strategy depending on different values of K in
a two-channel model with α = (0.1, 0.51)′ and β = (0.9, 0.51)′.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5

0.55

0.6

0.65

γ

A
ve

ra
ge

 R
ew

ar
d

NOPT−strategy
1STEP−strategy

Fig. 7. Average reward for the 1STEP-strategy (doted line) and the NOPT-strategy
(solid line) depending on different values of γ in a two-channel model with α =
(0.1, 0.51)′ and β = (0.9, 0.51)′.

In Fig. 7, we display the average reward obtained using the NOPT-strategy
and the 1STEP-strategy. The average rewards of the NOPT-strategy logically
increases with γ. The 1STEP-strategy is obviously not affected by this variation.
When γ is low, the rewards obtained are the same with both strategies, which
is consistent: a strategy maximizing a highly discounted expected reward then
becomes close to a strategy maximizing the expected one-step reward.

5 Conclusion

We have presented an algorithm for computing a near optimal policy for chan-
nel allocation considered as an instance of the planning problem in a POMDP.
Using the independence of the channels, a N -dimensional internal state differing

A Near Optimal Policy for Channel Allocation in Cognitive Radio 81

from the standard belief state is computed and the POMDP is converted into a
continuous state MDP. In order to obtain the optimal value function, we con-
structed a set of internal points where value iteration is used. The near optimal
policy is then greedy with respect to the approximate optimal value function.
The simulations results show that the proposed strategy is better than the pre-
viously proposed one-step strategy in a two-channel model when one channel
is either persistent or very fluctuating. Similar gain also holds when there are
three channels or more. However, the algorithmic complexity reduces the practi-
cability of the proposed approach for more than ten channels. We are currently
extending this approach to the case where the marginal distribution of the state
transitions of the channels is not known beforehand.

References

1. Cassandra, A., Littman, M., Zhang, N., et al.: Incremental pruning: A simple, fast,
exact method for partially observable Markov decision processes. In: Proceedings
of Thirteenth Conference on Uncertainty in Artificial Intelligence, pp. 54–61 (1997)

2. Meuleau, N., Kim, K., Kaelbling, L., Cassandra, A.: Solving POMDPs by search-
ing the space of finite policies. In: Proceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligence, pp. 417–426 (1999)

3. Aberdeen, D.: Policy-Gradient Algorithms for Partially Observable Markov Deci-
sion Processes. Ph.D thesis, Australian National University (2003)

4. Pineau, J., Gordon, G., Thrun, S.: Anytime point-based approximations for large
POMDPs. Journal of Artificial Intelligence Research 27, 335–380 (2006)

5. Astrom, K.: Optimal control of Markov decision processes with incomplete state
estimation. Journal of Mathematical Analysis and Applications 10, 174–205 (1965)

6. Sondik, E.: The Optimal Control of Partially Observable Markov Processes Over
the Infinite Horizon: Discounted Costs. Operations Research 26(2), 282–304 (1978)

7. Kaelbling, L., Littman, M., Cassandra, A.: Planning and acting in partially ob-
servable stochastic domains. Artificial Intelligence 101(1), 99–134 (1996)

8. Zhao, Q., Tong, L., Swami, A.: Decentralized cognitive MAC for dynamic spectrum
access. In: Proc. First IEEE International Symposium on New Frontiers in Dynamic
Spectrum Access Networks, pp. 224–232 (2007)

9. Whittle, P.: Restless Bandits: Activity Allocation in a Changing World. Journal of
Applied Probability 25, 287–298 (1988)

10. Papadimitriou, C., Tsitsiklis, J.: The complexity of optimal queueing network con-
trol. In: Proceedings of the Ninth Annual Structure in Complexity Theory Confer-
ence, pp. 318–322 (1994)

11. Le Ny, J., Dahleh, M., Feron, E.: Multi-UAV Dynamic Routing with Partial Obser-
vations using Restless Bandits Allocation Indices. LIDS, Massachusetts Institute
of Technology, Tech. Rep. (2007)

12. Guha, S., Munagala, K.: Approximation Algorithms for Partial-Information Based
Stochastic Control with Markovian Rewards. In: 48th Annual IEEE Symposium
on Foundations of Computer Science, 2007. FOCS 2007, pp. 483–493 (2007)

13. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., New York (1994)

14. Bonet, B.: An e-optimal grid-based algorithm for partially observable Markov de-
cision processes. In: 19th International Conference on Machine Learning, Sydney,
Australia (June 2002)

Evaluation of Batch-Mode Reinforcement
Learning Methods for Solving

DEC-MDPs with Changing Action Sets

Thomas Gabel and Martin Riedmiller

Neuroinformatics Group
Department of Mathematics and Computer Science

University of Osnabrück, 49069 Osnabrück, Germany
{thomas.gabel,martin.riedmiller}@uni-osnabrueck.de

Abstract. DEC-MDPs with changing action sets and partially ordered
transition dependencies have recently been suggested as a sub-class of
general DEC-MDPs that features provably lower complexity. In this pa-
per, we investigate the usability of a coordinated batch-mode reinforce-
ment learning algorithm for this class of distributed problems. Our agents
acquire their local policies independent of the other agents by repeated
interaction with the DEC-MDP and concurrent evolvement of their poli-
cies, where the learning approach employed builds upon a specialized
variant of a neural fitted Q iteration algorithm, enhanced for use in multi-
agent settings. We applied our learning approach to various scheduling
benchmark problems and obtained encouraging results that show that
problems of current standards of difficulty can very well approximately,
and in some cases optimally be solved.

1 Introduction

Decentralized decision-making is required in many real-life applications. Exam-
ples include distributed sensor networks, teams of autonomous robots, rescue op-
erations where units must decide independently which sites to search, or produc-
tion planning and factory optimization where machines may act independently
with the goal of achieving optimal joint productivity. The interest in analyzing
and solving decentralized learning problems is to a large degree evoked by their
high relevance for practical problems. While Markov decision processes (MDP)
have proven to be a suitable tool for solving problems involving a single agent,
a number of extensions of these models to multi-agent systems have been sug-
gested. Among those, the DEC-MDP framework [4], that is characterized by each
agent having only a partial view of the global system state, has been frequently
investigated. It has been shown that the complexity of general DEC-MDPs is
NEXP-complete, even for the benign case of two cooperative agents [4].

The enormous computational complexity of solving DEC-MDPs conflicts with
the fact that real-world tasks do typically have a considerable problem size. Tak-
ing this into consideration, we recently [10] identified a subclass of general DEC-
MDPs that features regularities in the way the agents interact with one another.

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 82–95, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Evaluation of Batch-Mode Reinforcement Learning Methods 83

For this class, we could show that the complexity of optimally solving an instance
of such a DEC-MDP is provably lower (NP-complete) than the general problem.

In this paper, we focus on job-shop scheduling problems which can be mod-
elled using the DEC-MDP class mentioned above. Since such problems involve
settings with ten and more agents, optimal solution methods can hardly be ap-
plied. Therefore, we propose for employing a multi-agent reinforcement learning
approach, where the agents are independent learners and do their learning on-
line. The disadvantage of choosing this learning approach is that agents may take
potentially rather bad decisions until they learn better ones and that, hence, only
an approximate joint policy may be obtained. The advantage is, however, that
the entire learning process is done in a completely distributed manner with each
agent deciding on its own local action based on its partial view of the world state
and on any other information it eventually gets from its teammates.

In Section 2, we summarize and illustrate the key properties of the class of
factored m-agent DEC-MDPs with changing action sets and partially ordered
transition dependencies [10], which are in the center of our interest. Section 3
discusses a method that allows for partially resolving some of the inter-agent
dependencies. Subsequently (Section 4), we provide the basics of our learning
approach to acquire approximate joint policies using coordinated multi-agent
reinforcement learning. Finally, in Section 5 we show how scheduling problems
can be modelled using the class of DEC-MDPs specified. Moreover, empirical
results for solving various scheduling benchmark problems are presented.

2 Decentralized MDPs

The subclass of problems we are focusing on may feature an arbitrary number
of agents whose actions influence, besides their own, the state transitions of
maximally one other agent in a specific manner. Formally defining the problem
settings of our interest, we embed them into the framework of decentralized
Markov decision processes (DEC-MDP) by Bernstein et al. [4].

Definition 1. A factored m-agent DEC-MDP M is defined by a tuple
〈Ag, S,A, P,R,Ω,O〉 with

– Ag = {1, . . . ,m} as the set of agents,
– S as the set of world states which can be factored into m components S =
S1 × · · · × Sm (the Si belong to one of the agents each),

– A = A1 × ... × Am as the set of joint actions to be performed by the agents
(a = (a1, . . . , am) ∈ A denotes a joint action that is made up of elementary
actions ai taken by agent i),

– P as the transition function with P (s′|s, a) denoting the probability that the
system arrives at state s′ upon executing a in s,

– R as the reward function with R(s, a, s′) denoting the reward for executing a
in s and transitioning to s′,

– Ω=Ω1×· · ·×Ωm as the set of all observations of all agents (o=(o1, . . . , om)∈
Ω denotes a joint observation with oi as the observation for agent i),

84 T. Gabel and M. Riedmiller

– O as the observation function that determines the probability O(o1, . . . , om|
s, a, s′) that agent 1 through m perceive observations o1 through om upon the
execution of a in s and entering s′.

– M is jointly fully observable, the current state is fully determined by the
amalgamation of all agents’ observations: O(o|s, a, s′) > 0 ⇒ Pr(s′|o) = 1.

We refer to the agent-specific components si ∈ Si, ai ∈ Ai, oi ∈ Ωi as local
state, action, and observation of agent i, respectively. A joint policy π is a set
of local policies 〈π1, . . . , πm〉 each of which is a mapping from agent i’s sequence
of local observations to local actions, i.e. πi : Ωi → Ai. Simplifying subsequent
considerations, we may allow each agent to fully observe its local state.

Definition 2. A factored m-agent DEC-MDP has local full observability, if for
all agents i and for all local observations oi there is a local state si such that
Pr(si|oi) = 1.

Note that joint full observability and local full observability of a DEC-MDP
do generally not imply full observability, which would allow us to consider the
system as a single large MDP and to solve it with a centralized approach. Instead,
typically vast parts of the global state are hidden from each of the agents.

A factored m-agent DEC-MDP is called reward independent, if there exist
local functions R1 through Rm, each depending on local states and actions
of the agents only, as well as a function r that amalgamates the global re-
ward value from the local ones, such that maximizing each Ri individually also
yields a maximization of r. If, in a factored m-agent DEC-MDP, the observation
each agent sees depends only on its current and next local state and on its ac-
tion, then the corresponding DEC-MDP is called observation independent, i.e.
P (oi|s, a, s′, (o1 . . . oi−1, oi+1 . . . om) = P (oi|si, ai, s

′
i). Then, in combination with

local full observability, the observation-related components Ω and O are redun-
dant and can be removed from Definition 1.

While the DEC-MDPs of our interest are observation independent and reward
independent, they are not transition independent. That is, the state transition
probabilities of one agent may very well be influenced by another agent. However,
we assume that there are some regularities, to be discussed in the next section,
that determine the way local actions exert influence on other agents’ states.

2.1 Variable Action Sets

The following two definitions characterize the specific subclass of DEC-MDPs
we are interested in. Firstly, we assume that the sets of local actions Ai change
over time.

Definition 3. An m-agent DEC-MDP with factored state space S = S1× · · · ×
Sm is said to feature changing action sets, if the local state of agent i is fully
described by the set of actions currently selectable by that agent (si = Ai \ {α0})
and Ai is a subset of the set of all available local actions Ai = {α0, αi1 . . . αik},
thus Si = P(Ai \ {α0}). Here, α0 represents a null action that does not change
the state and is always in Ai. Subsequently, we abbreviate Ar

i = Ai \ {α0}.

Evaluation of Batch-Mode Reinforcement Learning Methods 85

Fig. 1. DEC-MDPs with Changing Action Sets: Local State of Agent i

Concerning state transition dependencies, one can distinguish between depen-
dent and independent local actions. While the former influence an agent’s local
state only, the latter may additionally influence the state transitions of other
agents. As pointed out, our interest is in non-transition independent scenarios.
In particular, we assume that an agent’s local state can be affected by an arbi-
trary number of other agents, but that an agent’s local action affects the local
state of maximally one other agent.

Definition 4. A factored m-agent DEC-MDP has partially ordered transition
dependencies, if there exist dependency functions σi for each agent i with

1. σi : Ar
i → Ag ∪ {∅} and

2. ∀α ∈ Ar
i the directed graph Gα = (Ag∪{∅}, E) with E = {(j, σj(α))|j ∈ Ag}

is acyclic and contains only one directed path

and it holds P (s′i|s, (a1 . . . am), (s′1 . . . s
′
i−1, s

′
i+1 . . . s

′
m))

= P (s′i|si, ai, {aj ∈ Aj |i = σj(aj), j �= i})
The influence exerted on another agent always yields an extension of that

agent’s action set: If σi(α) = j, i takes local action α, and the execution of α
has been finished, then α is added to Aj(sj), while it is removed from Ai(si).

That is, the dependency functions σi indicate whose other agents’ states are
affected when agent i takes a local action. Further, Definition 4 implies that for
each local action α there is a total ordering of its execution by the agents. While
these orders are total, the global order in which actions are executed is only
partially defined by that definition and subject to the agents’ policies.

Ag1

Ag 2

Ag 3Ag 4

Ag 5

Ag 6

Action α2
Dependency Graph Gα2

Ag 1

Ag 2

Ag 3Ag 4

Ag 5

Ag 6

Action α3
Dependency Graph Gα3

Ag 1

Ag 2

Ag 3Ag 4

Ag 5

Ag 6

Action α4
Dependency Graph Gα4

σ2(2)=4
σ2(4)=5σ2(3)=Ø

… …

σ3(2)=2 σ3(3)=Ø σ3(4)=Ø

Agent 2 Dependency Function σ2

αi1αi0 αi2 αi3 αi5 αi6 αi7 αi8αi4

Agent 3

Agent 4

Agent 5 Agent 1

Agent 6

Ø Ø Ø Ø

… …

Agent 3 Depe

αi1αi0 αi2 αi3

Agent 6Ø Ø

Agent 2

a) b)

Fig. 2. Exemplary Dependency Functions (a) and Graphs (b)

In [10] it is shown that, for the class of problems considered, any local action
may appear only once in an agent’s action set and, thus, may be executed only
once. Further, it is proved that solving a factored m-agent DEC-MDP with
changing action sets and partially ordered dependencies is NP-complete.

86 T. Gabel and M. Riedmiller

3 Reactive Policies and Resolved Dependencies

An agent that takes its action based solely on its most recent local observation
si ⊆ Ai will in general not be able to contribute to optimal joint behavior. In
particular, it will have difficulties in assessing the value of taking its idle action
α0. Taking α0, the local state remains unchanged except when it is influenced
by dependent actions of other agents.

Definition 5. For a factored m-agent DEC-MDP with changing action sets and
partially ordered transition dependencies, a reactive policy πr = 〈πr

1 . . . π
r
m〉 con-

sists of m reactive local policies with πr
i : Si → Ar

i where Si = P(Ar
i).

So, purely reactive policies always take an action α ∈ Ai(si) = si (except for
si = ∅), even if it was more advisable to stay idle and wait for a transition from
si to some s′i = si ∪ {α′} induced by another agent, and then execute α′ in s′i.

3.1 Communication-Based Awareness of Dependencies

The probability that agent i’s local state moves to s′i depends on three factors:
on that agent’s current local state si, on its action ai, as well as on the set
{aj ∈ Aj |i = σj(aj), i �= j} = ∆i, i.e. on the local actions of all agents that may
influence agent i’s state transition. Let us for the moment assume that agent i
always knows the set ∆i. Then, all transition dependencies would be resolved
as they would be known to each agent. As a consequence, all local transitions
would be Markovian and local states would represent a sufficient statistic for
each agent to behave optimally.

Unfortunately, fulfilling the assumption of all ∆i to be known conflicts with
the idea of decentralized decision-making. In fact, knowing σj and relevant ac-
tions aj of other agents, enables agent i to determine their influence on its local
successor state and to best select its local action ai. This action, however, gen-
erally also influences another agent’s transition and, hence, that agent’s action
choice if it knows its set ∆j , as well. Thus, it can be seen that even in the be-
nign case of a two-agent system, there may be circular dependencies, which is
why knowing all ∆i entirely would only be possible if a central decision-maker
employing a joint policy and deciding for joint actions is used.

Nevertheless, we may enhance the capabilities of a reactive agent i by allowing
it to get at least some partial information about∆i. For this, we extend a reactive
agent’s local state space from Si = P(Ar

i) to Ŝi such that for all ŝi ∈ Ŝi it holds
ŝi = (si, zi) with zi ∈ P(Ar

i \ si). So, zi is a subset of the set of actions currently
not in the action set of agent i.

Definition 6. Let 1 . . .m be reactive agents acting in a DEC-MDP, as specified
in Definition 4, whose local state spaces are extended to Ŝi. Assume that current
local actions a1 . . . am are taken consecutively. Given that agent j decides for
aj ∈ Aj(sj) and σj(aj) = i, let also si be the local state of i and ŝi its current
extended local state with ŝi = (si, zi). Then, the transition dependency between
j and i is said to be resolved, if zi := zi ∪ {aj}.

Evaluation of Batch-Mode Reinforcement Learning Methods 87

Fig. 3. Left: Agent 5 behaves purely reactively. Right: A notification from agent 2
allows for resolving a dependency, agent 5 may stay willingly idle and meet its deadline.

The resolution of a transition dependency according to Definition 6 corresponds
to letting agent i know some of those current local actions of other agents by
which the local state of i will soon be influenced. Because, for the class of prob-
lems we are dealing with, inter-agent interferences are always exerted by chang-
ing (extending) another agent’s action set, agent i gets to know which further
action(s) will soon be available in its action set. By integrating this piece of
information into i’s extended local state description Ŝi, this agent obtains the
opportunity to willingly stay idle (execute α0) until the announced action aj ∈ zi

enters its action set and can finally be executed (see Figure 3 for an example).
Thus, because local states ŝi are extended by information relating to transi-
tion dependencies between agents, such policies are normally more capable than
purely reactive ones, since at least some information about future local state
transitions induced by teammates can be regarded during decision-making.

The notification of agent i, which instructs it to extend its local state com-
ponent zi by aj , may easily be realized by a simple message passing scheme
(assuming cost-free communication between agents) that allows agent i to send
a single directed message to agent σi(α) upon the local execution of α.

4 Policy Acquisition with Reinforcement Learning

Solving a DEC-MDP optimally is NEXP-hard and intractable for all except the
smallest problem sizes. Unfortunately, the fact that the subclass of DEC-MDPs
we identified in Section 2 is in NP and hence simpler to solve, does not rid us from
the computational burden implied. Given that fact, our goal is not to develop
yet another optimal solution algorithm that is applicable to small problems only,
but to look for a technique capable of quickly obtaining approximate solutions
in the vicinity of the optimum.

Reinforcement learning (RL) has proven to be usable for acquiring approxi-
mate policies in decentralized MDPs. In contrast to offline planning algorithms,
RL allows for a real decentralization of the problem employing independently
learning agents. However, due to inter-agent dependencies designing distributed
learning algorithms represents a challenging task.

In the remainder of this section, we outline the basic characteristics of our
approach to applying RL in distributed settings aiming at the acquisition of
joint policies for m-agent factored DEC-MDPs with changing action sets.

88 T. Gabel and M. Riedmiller

4.1 Challenges for Independent Learners

Boutilier [5] pointed out that any multi-agent system can be considered as a sin-
gle MDP when adopting an external point of view. The difficulties induced when
taking the step towards decentralization can be grouped into three categories.
First, in addition to the (single-agent) temporal credit assignment problem, the
multi-agent credit assignment problem arises, which corresponds to answering
the question of whose agent’s local action contributed how much to a corpo-
rate success. To this end, we consider reward independent DEC-MDPs only (see
Section 2) with the global reward being the sum of local ones.

A second challenge is represented by the agents’ uncertainty regarding the
other agents’ policies pursued during learning. To sidestep that problem, we
revert to an inter-agent coordination mechanism introduced in [12]. Here, the
basic idea is that each agent always optimistically assumes that all other agents
behave optimally (though they often will not, e.g. due to exploration). Updates
to the value function and policy learned are only done when an agent is cer-
tain that a superior joint action has been executed. Since the performance of
that coordination scheme quickly degrades in the presence of noise, we focus on
deterministic DEC-MDPs in the remainder of the paper.

Third, the subclass of DEC-MDPs identified in Section 2 has factored state
spaces providing each agent with (locally fully observable) state perceptions.
Since the global state is unknown, each agent must necessarily remember the full
history of local states to behave optimally, which quickly becomes intractable
even for toy problems (see [10] for our alternative approach of compactly en-
coding the agents’ state histories). In Section 3.1 we have suggested a message
passing scheme that enables the learners to inform other agents about expected
state transitions and thus enhances the capabilities of a purely reactive agent.
Although, in this way the optimal policy can generally not be represented, the
need for storing full state histories can be avoided.

4.2 Joint Policy Acquisition with Reinforcement Learning

We let the agents acquire their local policies independently of the other agents
by repeated interaction with the DEC-MDP and concurrent evolvement of their
policies. Our learning approach is made up of alternating data collection and
learning stages that are being run concurrently within all agents. At its core, a
neural fitted Q iteration (NFQ) algorithm [14] is used that allows the agents to
determine a value function over their local state-action spaces.

4.2.1 Data Collection
Our multi-agent extension of NFQ denotes a batch-mode RL algorithm where
agent i computes an approximation of the optimal policy, given a finite set Ti

of local four-tuples [8]. Ti = {(sk
i , a

k
i , r

k
i , s

′k
i)|k = 1 . . . p} can be collected in any

arbitrary manner (e.g. by an ε-greedy policy) and contains agent-specific local
states sk

i , local actions ak
i ∈ Ai(sk

i) = sk
i ⊆ Ai, corresponding rewards rk

i , as well
as local successor states s

′k
i entered. If the final state of the DEC-MDP has been

Evaluation of Batch-Mode Reinforcement Learning Methods 89

reached (Ai(si) = ∅ for all i), the system is reset to its starting state (beginning
of what we call a new training episode), and if a sufficient amount of tuples has
been collected, the learning stage (4.2.2) is entered.

4.2.2 Applying Neural Fitted Q Iteration
Given Ti and a regression algorithm, NFQ iteratively computes an approxima-
tion Q̃i : Si × Ai → R of the optimal state-action value function, from which
a policy π̃i : Si → Ai can be induced by greedy exploitation via π̃i(si) =
argmaxα∈Ai(si) Q̃i(si, α). Having initialized Q̃i and counter q to zero, NFQ re-
peatedly processes the following steps until some stop criterion becomes true:

1. construct training set Fi as input for the regression algorithm according to
Fi = {(vk, wk)|k = 1 . . . p}, with vk = (sk

i , a
k
i), target values wk are calcu-

lated using the Q learning [18] update rule, wk = rk
i + γmaxα∈sk

i
Q̃q

i (s
′k
i , α),

2. use the regression algorithm and Fi to induce a new approximation Q̃q+1
i :

Si ×Ai → R, and increment q.

For the second step, NFQ employs multi-layer perceptron neural networks in
conjunction with the efficient backpropagation variant Rprop [15].

4.2.3 Optimistic Inter-agent Coordination
For the multi-agent case, we modify step 2 of applying NFQ: Agent i creates a
reduced (optimistic) training set Oi such that |Oi| ≤ |Fi|. Given a deterministic
environment and the resetting mechanism during data collection (4.2.1), the
probability that agent i enters some sk

i more than once is larger than zero.
Hence, if a certain action ak

i ∈ Ai(sk
i) has been taken multiple times in sk

i , it
may—because of differing local actions selected by other agents—have yielded
very different rewards and local successor states for i. Instead of considering all
tuples from Ti, only those are used for creating Oi that have resulted in maximal
expected rewards. This means, we assume that all other agents take their best
possible local action, which are, when combined with ak

i , most suitable for the
current global state. Accordingly, we compute the optimistic target values wk

for a given local state-action pair vk = (sk
i , a

k
i) according to

wk := max
(sk

i ,ak
i ,rk

i ,s
′k
i)∈Ti,

(sk
i ,ak

i)=vk

(
rk
i + γmax

α∈sk
i

Q̃k
i (s

′k
i , α)

)

Consequently, Oi realizes a partitioning of Ti with respect to identical values of
sk

i and ak
i , and wk is the maximal sum of the immediate rewards and discounted

expected costs over all tuples (sk
i , a

k
i , ·, ·) ∈ Ti.

5 Experiments

Distributed problem solving often faces situations where a larger number of
agents are involved and where a factored system state description is given with
the agents taking their decisions based on local observations. Also, our assump-

90 T. Gabel and M. Riedmiller

tions that local actions may influence the state transitions of maximally one
other agent and that any action has to be performed only once are frequently
fulfilled. Sample real-world applications include scenarios from manufacturing,
traffic control, or assembly line optimization, where typically the production of
a good involves a number of processing steps that have to be performed in a
specific order. In a factory, however, usually a variety of products is assembled
concurrently, which is why an appropriate sequencing and scheduling of single
operations is of crucial importance for overall performance. Our class of factored
m-agent DEC-MDPs with changing action sets and partially ordered transition
dependencies covers a variety of such scheduling problems, for example flow-shop
and job-shop scheduling scenarios [13], even scheduling problems with recircu-
lating tasks can be modelled. Next, we show how our class of DEC-MDPs can
be utilized for modeling production planning problems and evaluate the perfor-
mance of our learning approach using a variety of established benchmarks.

5.1 Scheduling Problems

Thegoal of scheduling is to allocate a specifiednumberof jobs to a limitednumberof
resources (also called machines) such that some objective is optimized. In job-shop
scheduling (JSS), n jobs must be processed onmmachines in a pre-determined or-
der.Each job j consistsofνj operations oj,1 . . . oj,νj thathave tobehandledona cer-
tain resource �(oj,k) for a specific duration δ(oj,k). A job is finished after its last op-
eration has been entirely processed (completion time fj). In general, scheduling ob-
jectives tobeoptimizedall relate to thecompletion timeof the jobs. In thispaper,we
concentrate on the goal of minimizing maximum makespan (Cmax = maxj{fj}),
which corresponds to finishing processing as quickly as possible.

Solving JSS problems is well-known to be NP-hard. Over the years, numerous
benchmark problem instances of varying sizes have been established, a collection
of sample problems is provided by the OR Library [1]. A common characteristic
of those JSS benchmarks is that usually no recirculation of jobs is allowed,
i.e. that each job must be processed exactly once on each resource (νj = m). For
more basics on scheduling, the reader is referred to [13].

JSS problems can be modelled using factoredm-agent DEC-MDPs with chang-
ing action sets and partially ordered transition dependencies:

– The world state can be factored: To each of the resources one agent i is
associated whose local action is to decide which waiting job to process next.

– The local state of i can be fully described by the changing set of jobs currently
waiting for further processing. Since choosing and executing a job represents
a local action (i.e. Ar

i is the set of jobs that must be processed on resource
i), it holds Si = P(Ar

i).
– After having finished an operation of a job, this job is transferred to another

resource, which corresponds to influencing another agent’s local state by
extending that agent’s action set.

– The order of resources on which a job’s operation must be processed is given
in a JSS problem. Therefore, we can define σi : Ar

i → Ag∪{∅} (cf. Definition
4) for all agents/resources i as

Evaluation of Batch-Mode Reinforcement Learning Methods 91

σi(α) =

{
∅ if k = να

�(oα,k+1) else
where k corresponds to the number of that operation within job α that has
to be processed on resource i, i.e. k such that �(oα,k) = i.

– Given the no recirculation property from above and the definition of σi, the
directed graph Gα from Definition 4 is indeed acyclic with one directed path.

More low-level details on solving JSS problems in a decentralized manner as well
as on parameter settings of the RL algorithm involved, can be found in [9].

5.2 Experiment Outline

Classically, JSS problems are solved in a centralized manner, assuming that a
central control over the process can be established. From a certain problem size
on, however, the NP-hardness of the problem precludes the search for an optimal
solution even for a centralized approach. That is why frequently dispatching
priority rules are employed that take local dispatching decisions in a reactive
and independent manner (the FIFO rule is a well-known example).

In the following experiment, however, a comparison to alternative scheduling
methods is only our secondary concern. For comparison, we just provide results
for two of the best-performing priority rules (SPT chooses operations with short-
est processing time δ next and AMCC makes use of knowing the global system
state), as well as the theoretic optimum, representing a lower bound, as it may be
found by a centralized brute-force search. Our primary concern is on analyzing
the following three approaches. We compare agents that independently learn

– purely reactive policies πr
i (see Section 3) defined over Si = P(Ar

i) that never
remain idle when their action set is not empty [RCT],

– reactive policies π̂i that are partially aware of their dependencies on other
agents (notified about forthcoming influences exertedby other agents) [COM],

– policies πi : Ei → Ai using full information about the agents’ histories, here
Ei is a compact encoding of that agent i’s observation history Si (see [10]
for more details) [ENC].

In JSS problems, it typically holds that d(oj,k) > 1 for all j and k. Since
most of such durations are not identical, decision-making usually proceeds asyn-
chronously across agents. We assume that a COM-agent i sends a message to
agent σi(α) when it starts the execution of an operation from job α, announcing
to that agent the arrival of α, whereas the actual influence on agent σi(α) (its
action set extension) occurs d(oα,·) steps later (after oα,· has been finished).

Classes of Schedules
For a problem with m resources and n jobs consisting ofm operations each, there
are (n!)m possible schedules (also called set of active schedules, Sa). Considering
such a problem as a DEC-MDP, this gives rise to, for example, about 1.4 · 1017

possible joint policies for m = n = 6.
Considering purely reactive agents, the number of policies/schedules that can

be represented is usually dramatically reduced. Unfortunately, only schedules

92 T. Gabel and M. Riedmiller

from the class of non-delay schedules Snd can be created by applying reactive
policies. Since Snd ⊆ Sa and because it is known that the optimal schedule is
always in Sa [13], but not necessarily in Snd, RCT-agents can at best learn the
optimal solution from Snd. By contrast, learning with ENC-agents, in principle
the optimal solution can be attained, but we expect that the time required by
our learning approach for this to happen will increase significantly.

We hypothesize that the awareness of inter-agent dependencies achieved by
partial dependency resolutions via communication may in fact realize a good
trade-off between the former two approaches. On the one hand, when resolving
a transition dependency according to Definition 6, an agent i can become aware
of an incoming job. Thus, imay decide to wait for that arrival, instead of starting
to execute another job. Hence, also schedules can be created that are not non-
delay. On the other hand, very poor policies with unnecessary idle times can
be avoided, since a decision to stay idle will be taken very dedicatedly, viz only
when a future job arrival has been announced. This falls into place with the fact
that the extension of an agent’s local state to ŝi = (si, zi) is rather limited and
consequently the number of local states is only slightly increased.

5.3 Illustrative Benchmark

We start off with the FT6 benchmark problem taken from [1]. This depicts a
problem with 6 resources and 6 jobs consisting of 6 operations each, hence we
consider a DEC-MDP with 6 independently learning agents. Figure 4 summarizes
the learning curves for the three approaches we want to compare (note that the
SPT/FIFO/AMCC rules yield Cmax = 88/77/55, here, and are not drawn for
clarity). Results are averaged over 10 experiment repetitions and indicators for
best/worst runs are provided.

First of all, this experiment shows the effectiveness of our approach, since each
type of learning agents considered manages to attain its respective optimum and
because static dispatching rules with a local view are clearly outperformed. The
FT6 benchmark is a problem, where the best reactive policy (hence, the best

Fig. 4. Learning Curves for the FT6 Benchmark

Evaluation of Batch-Mode Reinforcement Learning Methods 93

Table 1. Learning results for scheduling benchmarks of varying size. All entries are
average makespan values. The last column shows the relative remaining error (%) of
the COM-agents compared to the theoretical optimum. Indices a, b, and c stand for
problem sets provided by different authors.

m × n #Prbl SPT AMCC Opt. RCT COM ENC Err

5x10 3 734.7 702.7 614.0 648.7 642.0 648.3 4.6
10x10a 3 1174.3 1096.0 1035.7 1078.0 1062.7 1109.0 2.6
10x10b 5 1000.2 894.2 864.2 899.0 894.6 928.6 3.5
10x10c 9 1142.6 977.1 898.2 962.7 951.0 988.4 5.9
5x20 1 1267.0 1338.0 1165.0 1235.0 1183.0 1244.0 1.5
15x20 3 888.3 771.0 676.0 747.7 733.7 818.0 8.6

non-delay schedule with Cmax = 57) is dragging behind, since the optimal solu-
tion corresponds to a delay schedule with makespan of 55. The steepest learning
curve emerges for purely reactive agents that achieve the best non-delay solu-
tion, hence little interaction with the process is required for those agents to
obtain high-quality policies. By contrast, ENC- and COM-agents are capable of
learning the optimal policy, where the former require significantly more training
time than the latter (note the log scale in Figure 4). This can be tributed to the
clearly increased number of local states of ENC-agents, which have to cover the
agents’ state histories, and to the fact that they may take idle actions in prin-
ciple in any state, while COM-agents do so only when a notification regarding
forthcoming externally influenced state transitions has been received.

5.4 Benchmark Results

We also applied our framework to a large variety of different-sized benchmarks
from [1] involving up to 15 agents and 20 jobs. In 12 out of the 37 benchmarks
examined already the RCT version of our learning agents succeeded in acquiring
the optimal joint policy. This also means that in those scenarios (all of them
involved 5 resources) the optimal schedule is a non-delay one and we omit ex-
periments using ENC- or COM-agent as no further improvement is possible.

Table 1 provides an overview of the results for the remaining, more intricate
25 benchmark problems (except for FT6, cf. Section 5.3), grouped by prob-
lem sizes (m × n). This summary gives the quality of policies obtained after
25000 training episodes. Since ENC-agents have shown to require substantially
longer to acquire high-quality policies, the results in the corresponding column
are expectedly poor. However, while purely reactive agents already outperform
standard rules, their enhancement by means of dedicated communication yields
excellent improvements in all cases.

6 Related Work

One of the first formal approaches to model cooperative multi-agent systems was
the MMDP framework by Boutilier [5], which requires every agent to be aware of

94 T. Gabel and M. Riedmiller

the current global state. By contrast, factored state information including local
partial/full observability are key ingredients of the DEC-POMDP framework of
Bernstein et al. [4]. While the general problem has NEXP-complete complex-
ity, other researchers have subsequently identified specific subclasses with lower
computational complexity, e.g. transition independent DEC-MDPs [3] and DEC-
MDPs with synchronizing communication [11]. While these subclasses are quite
distinct, our class of factored m-agent DEC-MDPs with changing action sets
and partially ordered transition dependencies features some commonalities with
DEC-MDPs with event-driven interactions [2] where the latter focus on systems
with two agents only and assume less structure in the inter-agent dependencies.

Independently learning agents have been targeted in a number of recent pub-
lications, e.g. [6,7]. Communication as a means of conveying information that is
local to one agent to others has been investigated, for instance, in [11]. Here,
policy computation is facilitated by allowing agents to fully synchronize their lo-
cal histories of observations. By contrast, in the paper at hand we have explored
a very limited form of directed communication that informs other agents about
forthcoming interferences on state transition. Other approaches with limited
communication can be found in [16] where each agent broadcasts its expected
gain of a learning update and coordination is realized by performing collective
learning updates only when the sum of the gains for the team as a whole is
positive, or in [17] where communication is employed to enable a coordinated
multi-agent exploration mechanism.

7 Conclusion

Decentralized Markov decision processes with changing action sets and partially
ordered transition dependencies have been suggested as a sub-class of general
DEC-MDPs that features provably lower complexity. In this paper, we have
explored the usability of a coordinated batch-mode reinforcement learning algo-
rithm for this class of distributed problems, that facilitates the agents to con-
currently and independently learn their local policies of action. Furthermore, we
have looked at possibilities for modeling memoryless agents and enhancing them
by restricted allowance of communication.

The subclass of DEC-MDPs considered covers a wide range of practical prob-
lems. We applied our learning approach to production planning problems and
evaluated it using numerous job-shop scheduling benchmarks that are already
NP-hard when solved in a centralized manner. The results obtained are con-
vincing insofar that benchmark problems of current standards of difficulty can
very well be approximately solved by the learning method we suggest. The poli-
cies our agents acquire clearly surpass traditional dispatching rules and, in some
cases, are able to solve the problem instances optimally.

Acknowledgements. This research has been supported by the German Re-
search Foundation (DFG) under grant number Ri 923/2-3.

Evaluation of Batch-Mode Reinforcement Learning Methods 95

References

1. Beasley, J.: OR-Library (2005),
http://people.brunel.ac.uk/∼mastjjb/jeb/info.html

2. Becker, R., Zilberstein, S., Lesser, V.: Decentralized Markov Decision Processes
with Event-Driven Interactions. In: Proceedings of AAMAS 2004, pp. 302–309.
ACM Press, New York (2004)

3. Becker, R., Zilberstein, S., Lesser, V., Goldman, C.: Solving Transition Independent
Decentralized MDPs. Journal of AI Research 22, 423–455 (2004)

4. Bernstein, D., Givan, D., Immerman, N., Zilberstein, S.: The Complexity of De-
centralized Control of Markov Decision Processes. Mathematics of Operations Re-
search 27(4), 819–840 (2002)

5. C.: Sequential Optimality and Coordination in Multiagent Systems. In: Proceed-
ings of IJCAI 1999, Sweden, pp. 478–485. Morgan Kaufmann, San Francisco (1999)

6. Brafman, R., Tennenholtz, M.: Learning to Cooperate Efficiently: A Model-Based
Approach. Journal of AI Research 19, 11–23 (2003)

7. Buffet, O., Dutech, A., Charpillet, F.: Shaping Multi-Agent Systems with Gradi-
ent Reinforcement Learning. Autonomous Agent and Multi-Agent System Jour-
nal 15(2), 197–220 (2007)

8. Ernst, D., Geurts, P., Wehenkel, L.: Tree-Based Batch Mode Reinforcement Learn-
ing. Journal of Machine Learning Research (6), 504–556 (2005)

9. Gabel, T., Riedmiller, M.: Adaptive Reactive Job-Shop Scheduling with Learning
Agents. International Journal of Information Technology and Intelligent Comput-
ing 2(4) (2007)

10. Gabel, T., Riedmiller, M.: Reinforcement Learning for DEC-MDPs with Changing
Action Sets and Partially Ordered Dependencies. In: Proceedings of AAMAS 2008,
Estoril, Portugal, pp. 1333–1336. IFAAMAS (2008)

11. Goldman, C., Zilberstein, S.: Optimizing Information Exchange in Cooperative
Multi-Agent Systems. In: Proceedings of AAMAS 2003, Melbourne, Australia, pp.
137–144. ACM Press, New York (2003)

12. Lauer, M., Riedmiller, M.: An Algorithm for Distributed Reinforcement Learning
in Cooperative Multi-Agent Systems. In: Proceedings of ICML 2000, Stanford,
USA, pp. 535–542. AAAI Press, Menlo Park (2000)

13. Pinedo, M.: Scheduling. Theory, Algorithms, and Systems. Prentice Hall, Engle-
wood Cliffs (2002)

14. Riedmiller, M.: Neural Fitted Q Iteration – First Experiences with a Data Efficient
Neural Reinforcement Learning Method. In: Gama, J., Camacho, R., Brazdil, P.B.,
Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS, vol. 3720, pp. 317–328. Springer,
Heidelberg (2005)

15. Riedmiller, M., Braun, H.: A Direct Adaptive Method for Faster Backpropagation
Learning: The RPROP Algorithm. In: Ruspini, H. (ed.) Proceedings of ICNN, San
Francisco, USA, pp. 586–591 (1993)

16. Szer, D., Charpillet, F.: Coordination through Mutual Notification in Cooperative
Multiagent RL. In: Proceedings of AAMAS 2004, pp. 1254–1255. IEEE Computer
Society, Los Alamitos (2005)

17. Verbeeck, K., Nowe, A., Tuyls, K.: Coordinated Exploration in Multi-Agent Rein-
forcement Learning: An Application to Load-Balancing. In: Proceedings of AAMAS
2005, Utrecht, The Netherlands, pp. 1105–1106. ACM Press, New York (2005)

18. Watkins, C., Dayan, P.: Q-Learning. Machine Learning 8, 279–292 (1992)

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

Bayesian Reward Filtering

Matthieu Geist1,2, Olivier Pietquin1, and Gabriel Fricout2

1 Supélec
IMS Research Group, Metz, France

{matthieu.geist,olivier.pietquin}@supelec.fr
2 ArcelorMittal Research,

MCE Department, Maizières-lès-Metz, France
gabriel.fricout@arcelormittal.com

Abstract. A wide variety of function approximation schemes have been
applied to reinforcement learning. However, Bayesian filtering approaches,
which have been shown efficient in other fields such as neural network
training, have been little studied. We propose a general Bayesian filtering
framework for reinforcement learning, as well as a specific implementation
based on sigma point Kalman filtering and kernel machines. This allows
us to derive an efficient off-policy model-free approximate temporal differ-
ences algorithm which will be demonstrated on two simple benchmarks.

Keywords: ReinforcementLearning,FunctionApproximation,Bayesian
Filtering.

1 Introduction

Reinforcement learning [1] is a general paradigm in which an agent learns to
control a dynamic system only through interactions. A feedback signal is pro-
vided to it as a reward information, which is a hint on the quality of the control.
Markov Decision Processes (MDP) are a common framework to solve this prob-
lem. A MDP is fully described by a tuple {S,A, T,R} where S is the state space
that can be explored, A is the action set that can be chosen by the agent, T
is a family of transition probabilities between states conditioned by the actions
and R is a set of expected rewards associated to transitions. This is further ex-
plained in section 2.1. In this framework, at each time step k, the system adopts
a state sk. According to this, the agent can chose an action ak included in a
subset of A. This action leads to a transition to state sk+1 and to the obten-
tion of a reward rk, the agent’s objective being to maximize the future expected
cumulative rewards. Actions can be of two kinds: exploitative or explorative.
Exploitative actions are optimal according to the agent’s knowledge about the
system. Explorative actions aim at increasing the agent’s knowledge about the
system. This is known as the exploitation vs exploration dilemma. In this paper
the knowledge of the environment will be modelled as a Q-function which maps
state action pairs to the expected cumulative rewards when following a given
associated policy after the first transition. The proposed approach is model-free,
no model of transitions and reward distributions is learned or known.

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 96–109, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Bayesian Reward Filtering 97

Solutions exist for the reinforcement learning problem with discrete state and
action spaces. However they generally do not scale very well and cannot handle
continuous state and/or action spaces. A wide variety of function approximation
schemes have thus been applied to reinforcement learning (see [1] as a starting
point). This is known as the generalization problem, and we propose to handle
it with a Bayesian filtering approach.

The objective of Bayesian filtering [2] is to infer a hidden state sequentially
from observations. The state evolution is driven by a possibly nonlinear map-
ping combined with a random process noise. Observations are linked to hidden
states through another possibly nonlinear mapping combined with a random
observation noise. Thus hidden states and observations are random variables.
Under classical assumptions, the analytical solution to this problem is given by
the recursive Bayes equations. As they are usually intractable, specific solutions
have been proposed. This is further developed in section 2.2.

In this paper are proposed the premises of a Bayesian filtering framework for
reinforcement learning. The general idea is to parameterize the Q-function, and
to consider the associated parameter vector as the hidden state of a Bayesian
filter. The associated observation equation links the reward to the parameters
through the Bellman equation [3]. We propose a specific implementation of this
general Bayesian reward filter: the Q-function is expressed as a weighted sum of
Gaussian kernels, the prior on these kernels is chosen with a dictionary method
[4], and the parameter vector evolution is computed with a sigma point Kalman
filter [5].

The idea to use Bayesian filtering for reinforcement learning is not novel, but
it has been surprisingly little studied. In [6] a modification of the linear quadratic
Gaussian Kalman filter model is proposed, which allows the on-line estimation
of optimal control (which is off-line for the classical one). In [4] Gaussian pro-
cesses are used for reinforcement learning. This method can be understood as
an extension of the Kalman filter to an infinite dimensional hidden state (the
Gaussian process), but it can only handle SARSA-like update rules (because of
the necessary linearity of the observation equation), contrarily to the proposed
contribution, which can be seen as a nonlinear extension of the parametric case
developed in [4]. In [7] a Kalman filter bank is used to find the parameters of a
piecewise linear approximation of the value function.

The rest of this paper is organized as follows. First the necessary background
is briefly presented. Then the proposed general framework and a specific imple-
mentation are explained. It is followed by the first results on two benchmarks:
the wet-chicken and the mountain car problems. Eventually we conclude and
sketch our future works.

2 Background

In this section will be presented the classical reinforcement learning formalism
and the Q-learning algorithm, as well as the general Bayesian filtering paradigm
and more specific solutions. Through the rest of the paper, a variable x will
denote a column vector or a scalar, which should be clear from the context.

98 M. Geist, O. Pietquin, and G. Fricout

2.1 Reinforcement Learning

A Markov Decision Process (MDP) consists of a state space S, an action space
A, a Markovian transition probability p : S × A → P(S) and a bounded re-
ward function r : S × A × S → R. A policy is a mapping from state to
action space: π : S → A. At time step k, the system is in a state sk, the
agent chooses an action ak = π(sk), and the system is then driven in a state
sk+1 following the conditional probability distribution p(.|sk, ak). The agent re-
ceives the associated reward rk = r(sk, ak, sk+1). Its goal is to find the pol-
icy which maximizes the expected cumulative rewards, that is the quantity
Eπ[

∑
k∈N

γkr(Sk, Ak, Sk+1)|S0 = s0] for every possible starting state s0, the
expectation being over the state transitions taken upon executing π, where
γ ∈ [0, 1[is a discount factor.

A classical approach to solve this optimization problem is to introduce the
Q-function defined as:

Qπ(s, a) =
∫

S

p(z|s, a)
(
r(s, a, z) + γQπ(z, π(z))

)
dz

It is the expected cumulative rewards by taking action a in state s and then
following the policy π. The optimality criterion is to find the policy π∗ (and as-
sociatedQ∗) such that for every state s and for every policy π, maxa∈AQ

∗(s, a) ≥
maxa∈AQ

π(s, a). The optimal Q-function Q∗ satisfies Bellman’s equation:

Q∗(s, a) =
∫

S

p(z|s, a)
(
r(s, a, z) + γmax

b∈A
Q∗(z, b)

)
dz

In the case of discrete and finite action and state spaces, the Q-learning algo-
rithm provides a solution to this problem. Its principle is to update a tabular
approximation of the optimal Q-function after each transition (s, a, r, s′):

Q̂(s, a) ← Q̂(s, a) + α

(
r + γmax

b∈A
Q̂(s′, b)− Q̂(s, a)

)
where α is a learning rate. An interesting fact is that the Q-learning is an off-
policy algorithm, that is it allows to learn the optimal policy (from the learned
optimal Q-function) while following a suboptimal one, given that it is sufficiently
explorative. The proposed contribution can be seen as an extension of this al-
gorithm to a Bayesian filtering framework (however with other advantages). See
[1] for a comprehensive introduction to reinforcement learning, or [8] for a more
formal treatment.

2.2 Bayesian Filtering

The problem of Bayesian filtering is to sequentially infer a hidden state xk given
past observations y1:k = {y1, y2, . . . , yk}. It can be expressed in its state-space
formulation:

xk+1 = fk(xk, vk)
yk = gk(xk, nk).

Bayesian Reward Filtering 99

The state evolution is driven by the mapping fk and the process noise vk. The
observation yk is a function of the state xk, corrupted by an observation noise
nk. Some prior knowledge about the system evolution is necessary (such as the
possibly nonlinear and non stationary mappings). The general principle is to
predict the new state xk given the previous observations y1:k−1, and to correct
it given the new observation yk, according to prediction and correction equations:

p(Xk|Y1:k−1) =
∫
X
p(Xk|Xk−1)p(Xk−1|Y1:k−1)dXk−1 (prediction),

p(Xk|Y1:k) =
p(Yk|Xk)p(Xk|Y1:k−1)∫

X p(Yk|Xk)p(Xk|Y1:k−1)dXk
(correction).

These equations are generally intractable. If the mappings are linear and if
the noises nk and vk are Gaussian, the optimal solution is given by the Kalman
filter: quantities of interest are random variables, and inference (that is predic-
tion of these quantities and correction of them given a new observation) is done
online by propagating sufficient statistics through linear transformations. If the
mappings are nonlinear (but the noises are still Gaussian), a first solution is to
linearize them around the state: it is the principle of the Extended Kalman Filter
(EKF), and sufficient statistics are still propagated through linear transforma-
tions. Another approach is the Sigma Point Kalman Filter (SPKF) framework
[5]. The basic idea is that it is easier to approximate a probability distribution
than an arbitrary nonlinear function. A set of so-called sigma points are deter-
ministically computed from the hidden state sufficient statistics. These points
are representative of the distribution of interest. The nonlinear mappings of these
points are then computed and used to compute sufficient statistics of interest
for prediction and correction equations. Algorithm 1 sketches a SPKF update in
the case of additive noise, based on the state-space formulation, and using the
standard Kalman notations: xk|k−1 denotes a prediction, xk|k an estimate (or a
correction), Px,y a covariance matrix, n̄k a mean and k is the discrete time in-
dex. The reader can refer to [5] for details. This filter will be used in the specific
implementation of the proposed framework. A last method is the particle filter
(or sequential Monte Carlo). It is a numerical approach designed for nonlinear
mappings and nongaussian noises. See [2] for a survey on Bayesian filtering.

3 The General Framework

Formulation of value function estimation as a Bayesian filtering problem has
been already proposed by Engel [4], however with a linear observation model: it
allows nonparametric representation of the value function (Gaussian processes)
but is mainly dedicated to the evaluation of the followed policy value (on-policy
aspect). Our contribution can be seen as a nonlinear extension of Engel’s work,
however with a parametric representation constraint.

100 M. Geist, O. Pietquin, and G. Fricout

Algorithm 1. SPKF Update
Inputs: x̄k−1|k−1, Pk−1|k−1

Outputs: x̄k|k, Pk|k

Sigma points computation:
Compute deterministically the sigma point set Xk−1|k−1 from x̄k−1|k−1 and Pk−1|k−1;

Prediction step:
Compute Xk|k−1 = fk(Xk−1|k−1, v̄k);
Compute x̄k|k−1 and Pk|k−1 from Xk|k−1 and the process noise covariance;

Correction step:
Observe yk;
Yk|k−1 = gk(Xk|k−1, n̄k);
Compute ȳk|k−1, Pyk|k−1 and Pxk|k−1,yk|k−1 from Xk|k−1, Yk|k−1 and the observation
noise covariance;
Kk = Pxk|k−1,yk|k−1P−1

yk|k−1
; {Kalman gain}

x̄k|k = x̄k|k−1 + Kk(yk − ȳk|k−1);
Pxk|k = Pxk|k−1 − KkPyk|k−1KT

k ;

The Bellman equation can be written as:

Q∗(s, a) = r(s, a, s′) + γmax
b∈A

Q∗(s′, b)− ns,a(s′)

with ns,a(s′) =
∫

S

p(z|s, a)
{
r(s, a, s′)− r(s, a, z)

+ γ

(
max
b∈A

Q∗(s′, b)−max
b∈A

Q∗(z, b)
)}

dz.

Being the nonlinear mapping of the random variable (S′|S = s,A = a) of law
p(.|s, a), ns,a is indeed a random variable. It can be easily shown that this random
variable is centered with finite variance, that is, rmax being the bound on the
reward function:∫

S

ns,a(z)p(z|s, a)dz = 0 and
∫

S

n2
s,a(z)p(z|s, a)dz ≤

(
rmax

1− γ

)2

For an observed transition (s, a, r, s′), the Bellman equation can be rewritten:

r(s, a, s′) = Q∗(s, a)− γmax
b∈A

Q∗(s′, b) + ns,a(s′)

This form is very “Q-learning like” and is of primary importance for the proposed
framework.

Suppose that the Q-function is parameterized (either linearly or nonlinearly)
by a vector θ. The aim is to find a good approximation Q̂θ of the optimal Q-
function Q∗ by observing transitions (s, a, r, s′). This reward regression problem
is cast into a state-space representation. For an observed transition (sk, ak, rk, s

′
k),

it is written as:

Bayesian Reward Filtering 101

θk+1 = θk + vk

rk = Q̂θk
(sk, ak)− γmax

a∈A
Q̂θk

(s′k, a) + nk.

Here vk is an artificial process noise and nk a centered observation noise in-
cluding all the stochasticity of the MDP. The framework is thus posed, but is
far from being solved. The observation equation is nonlinear (because of the
max operator), that’s why classical methods such as the Kalman filter cannot
be used. Formally, the process noise is null, nevertheless introducing an artifi-
cial noise can improve the stability and convergence performances of the filter.
A (possibly adaptive) observation noise has to be chosen also, as well as the
parameterization for the Q-function. Last but not least, as for each Bayesian
approach, a prior on parameters has to be set. A specific implementation of this
Bayesian filtering framework is proposed in the next section.

4 Practical Solution

A kernel parameterization is chosen for the Q-function, because of its expressive-
ness given by the Mercer theorem [9]. A kernel is a continuous, symmetric and
positive definite function. Each kernel is a dot product in a (generally higher)
dimensional space. More precisely, for each kernel K, there exists a mapping ϕ
from the working space X to a so-called feature space F such that ∀x, y ∈ X ,
K(x, y) = 〈ϕ(x), ϕ(y)〉. This fact is important for the initialisation of the pro-
posed algorithm.

More precisely Gaussian kernels are chosen, and their mean and deviation are
considered as parameters:

Q̂θ(s, a) =
p∑

i=1

αiKσs
i
(s, si)Kσa

i
(a, ai)

with Kσx
i
(x, xi) = exp

(
−(x− xi)T (Σx

i)−1(x− xi)
)
,

where x = s, a, Σx
i = diag(σx

i)2,

and θ = [(αi)
p
i=1, (s

T
i)p

i=1, (a
T
i)p

i=1, ((σ
s
i)T)p

i=1, ((σ
a
i)T)p

i=1]
T

The operator diag applied on a column vector gives a diagonal square matrix.
Note that K(σs

i ,σa
i)([sT , aT]T , [sT

i , a
T
i]T) = Kσs

i
(s, si)Kσa

i
(a, ai) is a product of

Gaussian kernels, thus it is a (still Gaussian) kernel.

4.1 Dictionary Computation

A first problem is to choose the number p of kernel functions and the associated
prior. A variety of methods can be contemplated, the simplest one being to
choose equally spaced kernel fonctions. However the method described below
rests on the mathematical signification of kernels and basic algebra, it is thus
well motivated. Moreover, it automatically selects the number of basis functions.

102 M. Geist, O. Pietquin, and G. Fricout

To choose the prior kernel functions, a prior is first put on the Gaussian widths
σT

0 = [(σs
0)

T , (σa
0)T]. Then a dictionary method proposed by Engel [4] is used to

determine the number of kernels and their prior centers. Consider a kernel K,
the associated mapping ϕ and a set of points X = {x1, x2, . . . }. The aim of the
dictionary method is to compute a set of p points D = {x̃1, . . . , x̃p} such that
ϕ(D) is an approximate basis of ϕ(X).

This procedure is iterative. Suppose that samples x1, x2, . . . are sequentially
observed. At time k, a dictionary Dk−1 = (x̃j)

mk−1
j=1 ⊂ (xj)k−1

j=1 is available where
by construction feature vectors ϕ(x̃j) are approximately linearly independent in
F . Sample xk is then observed, and is added if ϕ(xk) is linearly independent on
Dk−1. To test this, weights w = (w1, . . . , wmk−1)

T have to be computed so as to
satisfy

δk = min
w

∥∥∥∥∥∥
mk−1∑
j=1

wjϕ(x̃j)− ϕ(xk)

∥∥∥∥∥∥
2

A predefined threshold ν determining the quality of the approximation (and
consequently the sparsity of the dictionary) is used. If δk > ν, xk = x̃mk

is
added to the dictionary, otherwise ϕ(xk) can be written as:

ϕ(xk) =
mk−1∑
i=1

wiϕ(x̃i) + ϕres with ‖ϕres‖2 ≤ ν

Defining the mk−1 ×mk−1 matrix K̃k−1 and the mk−1 × 1 vector k̃k−1(x) as(
K̃k−1

)
i,j

= K(x̃i, x̃j) and
(
k̃k−1(x)

)
i
= K(x, x̃i)

and by using the bilinearity of the dot product and the kernel trick, δk can be
written as:

δk = min
w

{
wT K̃k−1w − 2wT k̃T

k−1(xk) +K(xk, xk)
}

whereof solution is δk = K(xk, xk) − k̃k−1(xk)wk with wk = K̃−1
k−1k̃k−1(xk).

Moreover there exists a computationally efficient algorithm using the partitioned
matrix inversion formula to construct this dictionary. See [4] for details. Prac-
tically it is supposed that S and A are compact sets and that their bounds are
known. Then the corresponding dictionary is computed in a preprocessing step
from N samples uniformly sampled from S ×A.

4.2 Gaussian Prior

Recall that as for any Bayesian approach, a prior parameter distribution has to
be chosen. We state that θ0 ∼ N (θ̄0, Σθ0) where

θ̄0 = [α0, . . . ,Ds,Da, (σs
0)

T , . . . , (σa
0)T , . . .]T

Σθ0 = diag(σ2
α0
, . . . , σ2

µs
0
, . . . , σ2

µa
0
, . . . , σ2

σs
0
, . . . , σ2

σa
0
, . . .)

Bayesian Reward Filtering 103

In these expressions, α0 is the prior mean on kernel weights, D = Ds × Da is
the set of prior means on kernel centers computed in a preprocessing step with
the dictionary from the prior means on kernel deviations σT

0 = [(σs
0)T , (σa

0)T],
and σ2

α0
, σ2

µx
0
, σ2

σx
0

are respectively the prior variances on kernel weights, cen-
ters and deviations, for x = s, a. All these parameters (except the dictionary)
have to be initialized beforehand, using the problem’s prior knowledge. Let
q = (2(na + ns) + 1) p, with ns (resp. na) being the dimension of the state
space (resp. the action space). Note that θ̄0 ∈ Rq and Σθ0 ∈ Rq×q. A prior on
noises also has to be put: more precisely, v0 ∼ N (0, Rv0) and n0 ∼ N (0, Rn0),
where Rn0 = σ2

n0
.

4.3 Parameters Update

Once the parameters are initialized, the parameter vector has still to be updated
as new observations (sk, ak, rk, s

′
k) are available. A Square-Root Central Differ-

ence Kalman Filter (SR-CDKF) is used, which is a specific implementation of
the SPKF sketched before. See [5] for further information. The last problem is to
choose the artificial process noise. Formally, since the target function is station-
ary, there is no process noise. However, following [5], an artificial process noise
is introduced.

Its covariance is set to a fraction of the parameter covariance, that is

Rvk
= (λ−1 − 1)Σθk

where λ ∈]0, 1] (1 − λ � 1) is a forgetting factor similar to the one from the
recursive least-squares (RLS) algorithm. In this paper, the observation noise is
constant, that is Rnk

= Rnk−1 . The proposed Bayesian reward filtering algorithm
is summarized in Algorithm 2.

4.4 Maximum over Action Space

Notice that a technical difficulty is to compute the maximum over the actions for
the parameterized Q-function. This computation is necessary for the filter up-
date. A first solution is to sample the action space and to compute the maximum
over the obtained samples. However this is especially computationally inefficient.
The used method is closed to one proposed in [10].

The maximum over action kernel centers is computed: µa =argmaxai
Q̂θ(s, ai).

It serves then as the initialization for the Newton-Raphson method used to find
the maximum :

am ← am −
(
(∇a∇T

a)Q̂θ(s, a)
)−1

a=am

∇aQ̂θ(s, a)
∣∣∣
a=am

If the Hessian matrix is singular, a gradient ascent/fixed point scheme is used:

am ← am + ∇aQ̂θ(s, a)
∣∣∣
a=am

The obtained action am is considered as the action which maximizes the param-
eterized Q-function.

104 M. Geist, O. Pietquin, and G. Fricout

Algorithm 2. A Bayesian reward filtering algorithm
inputs: ν, N , α0, σ0, σα0 , σµx

0
, σσx

0
, σv0 , σn0

outputs: θ̄, Σθ

Compute Engel’s dictionary:
∀i ∈ {1 . . . N}, [sT

i , aT
i]T ∼ US×A;

Set X = {[sT
1 , aT

1]T , . . . , [sT
N , aT

N]T };
D =Compute-Dictionary(X,ν,σ0)

Initialization:
Initialize θ̄0, Σθ0 , Rn0 , Rv0 ;

for k = 1, 2, . . . do
Observe tk = (sk, ak, rk, s′k);

SR-CDKF update:
[θ̄k, Σθk

] = SR-CDKF-Update(θ̄k−1 ,Σθk−1 ,tk,Rvk−1 ,Rnk−1);

Artificial process noise update:
Rvk = (λ−1 − 1)Σθk

;
end for

5 Preliminary Results

The proposed approach is demonstrated on two problems. First, the “wet-chicken”
task is a continuous state and action space and stochastic problem. Second, the
“mountain car” problem is a continuous state, discrete action and deterministic
problem. The latter will require an hybrid parametrization.

Notice that this section focuses on the regression part of the proposed method,
that is the ability to learn an optimal Q-function from random transitions.
Thereby the algorithm does not learn from trajectories here, and thus notably
avoid the dilemma between exploration and exploitation, which is left for future
works. Let’s discuss the choice of parameters.

5.1 Choice of Parameters

For both tasks the reinforcement learning discount factor was set to γ = 0.9. The
dictionary’s sparsity factor was set to ν = 0.9. Similarly to the recursive least-
squares algorithm, the adaptive process noise covariance was set to a high value,
such that λ−1 − 1 � 10−6. The dictionary is computed from N = 104 samples
uniformly sampled from S×A. Note that even if this is done in a preprocessing
step, the learning part of the algorithm is nonetheless online.

The initial choice of kernel deviations is problem dependant. However a prac-
tical good choice seems to take a fraction of the quantity x(j)max − x(j)min for
the kernel deviation associated to x(j), the jth component of the column vector
x, x(j)max and x(j)min being the bounds on the values taken by the variable x(j).
We supposed the prior kernel weights to be centered, and we set the associated
standard deviation to a little fraction of the theoretical bound on Q-function,
that is rmax

1−γ . Because of geometry of Gaussian distributions, we suppose that

Bayesian Reward Filtering 105

centers provided by the dictionary are approximately uniformly distributed, and
we set the prior deviation of the jth component of the vector x to a little frac-
tion of (x(j)max − x(j)min)p−

1
ns+na , with the convention that for discrete spaces

n = 0. Finally we set up the deviation of the prior kernel deviations to a little
fraction of them. Otherwise speaking, we set σ

σ
x(j)
0

to a little fraction of σx(j)
0

for the jth component of x.
To sum up, the Gaussian prior on parameterization is chosen such that:

σ
x(j)
0 ∝ x(j)max − x(j)min

µα0 = 0 and σα0 ∝
rmax

1− γ

σ
µ

x(j)
0

∝ x(j)max − x(j)min
(ns+na)

√
p

σ
σ

x(j)
0

∝ σ
x(j)
0

5.2 Wet-Chicken

In the wet-chicken problem (inspired by [11]), a canoeist has to paddle on a river
until reaching a waterfall. It restarts if it falls down. Rewards increase linearly
with the proximity of the waterfall, and drop off for falling. Turbulences make
the transition probabilistic. More formally, the state space is S = [0, 10] (10
being the waterfall position), the action space A = [−1, 1] (continuously from
full backward padding to full forward padding), the transition is s′ = s + a+ c

with c ∼ N (0, σc), σc = 0.3 and the associated reward is equal to r = s′
10 . If

s′ ≥ 10 the canoeist falls, the associated reward is r = −1 and the episode ends.
To test the proposed framework, random transitions are uniformly sampled

and used to feed the filter: at each time step k, a state sk and an action ak are
uniformly sampled from S×A, and used to generate a (random) transition to s′k,
with associated reward rk, and the transition (sk, ak, s

′
k, rk) is the input of the

algorithm. The results are shown on Fig. 1. For each run of the algorithm and
every 250 samples, the expected cumulative rewards for the current policy has
been computed as an average of cumulative rewards over 1000 episodes which
were randomly (uniform distribution) initiated (thus the average is done over
starting states and stochasticity of transitions). Notice that the lifetime of the
agent (the duration of an episode) was bounded to 100 interactions with its
environment. We then computed a two dimensional histogram of those averaged
cumulative rewards over 100 different runs of the algorithm. In other words, we
show the distribution of cumulative rewards over different runs of the algorithm
as a function of the number of observed transitions. The bar on the right shows
the percentages associated to the histogram.

The optimal policy has an averaged cumulative rewards of 6 (computed with
value iteration over a very finely sampled state-action space). One can see on
Fig. 1 that the proposed algorithm can learn near optimal policies. After 1000
samples some of policies can achieve a score of 5 (84% of the optimal policy),

106 M. Geist, O. Pietquin, and G. Fricout

Fig. 1. Two-dimensional histogram of averaged cumulative rewards for the wet-chicken
problem (100 runs)

which is achieved by a majority of the policies after 3000 samples. After 7000,
very close to optimal policies were found in almost all runs of the algorithm (the
mode of the associated distribution is at 5.85, that is 98% of the optimal policy).
To represent the approximated Q-function, 7.7± 0.7 kernel functions were used,
which is relatively few for such a problem (from a regression perspective).

Two remarks of interest have to be made on this benchmark. First, the ob-
servation noise is input-dependant, as it models the stochasticity of the MDP.
Recall that here we have chosen a constant observation noise. Secondly, the noise
can be far to Gaussianity. For example, in the proximity of the waterfall it is
bimodal because of the shift of reward. Recall that the proposed filter assumes
Gaussianity of noises. Thus we can conclude that the proposed approach is quite
robust, and that it achieves good performance considering that the observations
were totally random (off-policy aspect).

5.3 Mountain Car

The second problem is the mountain-car task. A underpowered car has to go up
a steep mountain road. The state is 2-dimensional (position and velocity) and
continuous, and there are 3 actions (forward, backward and zero throttle). The
problem full description is given in [1]. A null reward is given at each time step,
and r = 1 is given when the agent reaches the goal.

A first problem is to find a parameterization for this task. The proposed one
is adapted for continuous problems, not hybrid ones. But this approach can
be easily extended to continuous states and discrete actions tasks. A simple
solution consists in having a parameterization for each discrete action, that is

Bayesian Reward Filtering 107

a parametrization of the form θ = [θa1 , θa2 , θa3] and an associated Q-function
Qθ(s, a) = Qθa(s). But one can notice that for a fixed state and different actions
the Q-values will be very close. In other words Q∗(s, a1), Q∗(s, a2) and Q∗(s, a3)
will have similar shapes, as functions over the state space. Thus consider that
the weights will be specific to each action, but the kernel centers and deviations
will be shared over actions. More formally the parameter vector is

θ = [(αa1
i)p

i=1, (α
a2
i)p

i=1, (α
a3
i)p

i=1, (s
T
i)p

i=1, ((σ
s
i)T)p

i=1]
T

the notation being the same as in the previous sections.
As for the wet-chicken problem, the filter has been fed with random transi-

tions. Results are shown on Fig. 2, which is a two-dimensional histogram similar
to the previous one. The slight difference is that the performance measure is now
the “cost-to-go” (the number of steps needed to reach the goal). It can be linked
directly to the averaged cumulative rewards, however we think it is more mean-
ingful. For each run of the algorithm and every 250 samples, the expected cost-
to-go for the current policy has been computed as an average of 1000 episodes
which were randomly initiated (average is only done over starting states here,
as transitions are deterministic). The lifetime of the agent was bounded to 1000
interactions with its environment. The histogram is computed over 100 runs.

The optimal policy has an averaged cost-to-go of 55 (computed with value
iteration over a very finely sampled state space). One can see on Fig. 2 that the
proposed algorithm can find near optimal policies. After 1500 samples most of
policies achieve a cost-to-go smaller than 120. After 6000 samples, policies very

Fig. 2. Two-dimensional histogram of the averaged cost-to-go for the mountain-car
problem (100 runs)

108 M. Geist, O. Pietquin, and G. Fricout

close to the optimal one were found in almost all runs of the algorithm (the
mode of the associated distribution is at 60). To represent the approximated
Q-function, 7.5± 0.8 kernel functions were used, which is relatively few for such
a problem (from a regression perspective).

This problem is not stochastic, but informative rewards are very sparse (which
can cause the Kalman gain to converge too quickly), transitions are nonlinear and
rewards are binary. Despite this, the proposed filter exhibits good convergence.
Once again we can conclude that the proposed approach achieves good results
considering the task at hand.

5.4 Comparison to Other Methods

For now the proposed algorithm treats the different control tasks as regres-
sion problems (learning from random transitions), thus it is ill comparable to
state-of-the-art reinforcement learning algorithms which learns from trajectories.
Nevertheless we argue that the quality of learned policy is comparable to state-
of-the art methods. Measuring this quality depends on the problem settings and
on the measure of performance, however the Bayesian reward filter finds very
close to optimal policies. See [11] for example.

In most approaches, the system is controlled while learning, or for batch meth-
ods observed samples come from a suboptimal policy. In the proposed experi-
ments, totally random transitions are observed. However for the mountain-car
problem it is often reported that at least a few hundreds of episodes are re-
quired to learn a near-optimal policy (see for example [1]), and each episode
may contain from a few tens to hundreds steps (this depends on the quality of
the current control). In the proposed approach a few thousands of transitions
have to be observed in order to obtain a near optimal policy. This is roughly the
same order of magnitude for convergence speed.

We have demonstrated the algorithm on two simple benchmarks, notwith-
standing it is planned to conduct more extensive comparison to other approaches
when a control organ is added to the proposed framework.

6 Conclusion and Future Works

We have introduced a general Bayesian filtering framework for reinforcement
learning. By observing rewards (and associated transitions) the filter is able to
infer a near-optimal policy (through the parameterized Q-function). A specific
implementation, based on sigma point Kalman filtering, on kernel machines and
on a sparsification method has been described. It has been tested on two rein-
forcement learning benchmarks, each one exhibiting specific difficulties for the
algorithm. This off-policy Bayesian reward filter has been shown to be efficient
on this two continuous tasks.

However, this paper did not demonstrate all the potentialities of the proposed
framework. The Bayesian filtering approach allows to derive uncertainty infor-
mation over estimated Q-function which can be used to handle the exploration-
exploitation dilemma, in the spirit of [12] or [13]. This could allow to speed-up

Bayesian Reward Filtering 109

and to enhance learning. Moreover, we think that the partial observability prob-
lem can be quite naturally embedded in such a Bayesian filtering framework, as
the Q-function can be considered as a function over probability densities.

In our future works we aim to treat the two aforementioned problems, our
main goal being to handle what we consider to be the three major reinforce-
ment learning problems (generalization, partial observability and exploration-
exploitation trade-off) at once. However there are other points of interest. A
more efficient adaptive process noise could speed up and improve the conver-
gence’s robustness of the filter, and adaptive observation noise could be nec-
essary for some more complex tasks, as it is formally input-dependent. Other
parametrization for the Q-function can also be considered. Moreover, there are
a few technical issues, as the search of maxima over actions. Last but not least
theoretical convergence may be a problem and should be studied.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (Adaptive
Computation and Machine Learning), 3rd edn. The MIT Press, Cambridge (1998)

2. Chen, Z.: Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond.
Technical report, Adaptive Systems Lab, McMaster University (2003)

3. Bellman, R.: Dynamic Programming, 6th edn. Dover Publications (1957)
4. Engel, Y.: Algorithms and Representations for Reinforcement Learning. Ph.D the-

sis, Hebrew University (April 2005)
5. van der Merwe, R.: Sigma-Point Kalman Filters for Probabilistic Inference in Dy-

namic State-Space Models. Ph.D thesis, OGI School of Science & Engineering,
Oregon Health & Science University, Portland, OR, USA (April 2004)

6. Szita, I., Lőrincz, A.: Kalman Filter Control Embedded into the Reinforcement
Learning Framework. Neural Comput. 16(3), 491–499 (2004)

7. Phua, C.W., Fitch, R.: Tracking Value Function Dynamics to Improve Reinforce-
ment Learning with Piecewise Linear Function Approximation. In: ICML 2007
(2007)

8. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 3rd edn. Athena
Scientific (1995)

9. Vapnik, V.N.: Statisical Learning Theory. John Wiley & Sons, Inc., Chichester
(1998)

10. Carreira-Perpinan, M.A.: Mode-Finding for Mixtures of Gaussian Distributions.
IEEE Transactions on Pattern Analalysis and Machine Intelligence 22(11), 1318–
1323 (2000)

11. Schneegass, D., Udluft, S., Martinetz, T.: Kernel Rewards Regression: an Informa-
tion Efficient Batch Policy Iteration Approach. In: AIA 2006: Proceedings of the
24th IASTED international conference on Artificial intelligence and applications,
Anaheim, CA, USA, pp. 428–433. ACTA Press (2006)

12. Dearden, R., Friedman, N., Russell, S.J.: Bayesian Q-learning. In: Fifteenth Na-
tional Conference on Artificial Intelligence, pp. 761–768 (1998)

13. Strehl, A.L., Li, L., Wiewiora, E., Langford, J., Littman, M.L.: PAC Model-Free
Reinforcement Learning. In: 23rd International Conference on Machine Learning
(ICML 2006), Pittsburgh, PA, USA, pp. 881–888 (2006)

Basis Expansion in Natural Actor Critic
Methods

Sertan Girgin1 and Philippe Preux1,2

1 Team-Project SequeL, INRIA Lille Nord-Europe
2 LIFL (UMR CNRS), Université de Lille

{sertan.girgin,philippe.preux}@inria.fr

Abstract. In reinforcement learning, the aim of the agent is to find
a policy that maximizes its expected return. Policy gradient methods
try to accomplish this goal by directly approximating the policy using
a parametric function approximator; the expected return of the current
policy is estimated and its parameters are updated by steepest ascent in
the direction of the gradient of the expected return with respect to the
policy parameters. In general, the policy is defined in terms of a set of
basis functions that capture important features of the problem. Since the
quality of the resulting policies directly depend on the set of basis func-
tions, and defining them gets harder as the complexity of the problem
increases, it is important to be able to find them automatically. In this
paper, we propose a new approach which uses cascade-correlation learn-
ing architecture for automatically constructing a set of basis functions
within the context of Natural Actor-Critic (NAC) algorithms. Such basis
functions allow more complex policies be represented, and consequently
improve the performance of the resulting policies. We also present the
effectiveness of the method empirically.

1 Introduction

Reinforcement learning (RL) is the problem faced by an agent that is situated
in an environment and must learn a particular behavior through repeated trial-
and-error interactions with it [1]; at each time step, the agent observes the state
of the environment, chooses its action based on these observations and in return
receives some kind of “reward”, in other words a reinforcement signal, from the
environment as feedback. The aim of the agent is to find a policy, a way of
choosing actions, that maximizes its overall gain – a function of rewards, such as
the (discounted) sum or average over a time period. Policy gradient methods try
to accomplish this goal by directly approximating the policy using a parametric
function approximator. Instead of estimating the value function and then deriv-
ing a greedy policy with respect to the value function, the expected return of the
current policy is estimated and its parameters are updated by steepest ascent in
the direction of the gradient of the expected return with respect to the policy
parameters. Policy gradient methods benefit from strong convergence properties,
and especially with the emergence of methods that utilize the natural gradient

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 110–123, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Basis Expansion in Natural Actor Critic Methods 111

estimations that are independent of the coordinate frame chosen for expressing
the policy parameters, shown to be effective. In most of these approaches, the
policy is represented in terms of a set of problem dependent basis functions.
The basis functions map the state(-action) variables to real numbers; each basis
function performs a mapping that is different from the others, and aims at cap-
turing the important features of the problem domain and the relations within.
Consequently, the quality of the resulting policies directly depend on these func-
tions. However, as the complexity of the problem that is being solved increases,
it also becomes harder to find a “good” set of such functions. This brings up the
question of what the set of best basis functions is and how we can find them.

In particular, in this paper, we will focus on the Natural Actor Critic (NAC)
methods together with a linear combination of basis functions to represent a
parameterized policy, and a compatible advantage value function to learn an op-
timal policy from a given set of experience samples. We seek to provide a possible
answer to the question posed above by proposing a method that incorporates
a cascade correlation learning architecture into NAC and iteratively adds new
basis functions to a set of initial basis functions. In Section 2, we first introduce
policy gradient and natural actor critic methods. Sections 3 describes cascade
correlation learning architecture followed by the details of the proposed method
for basis function expansion. Section 4 presents empirical evaluations on some
benchmark problems, and a review of related work can be found in Section 5.
Finally, Section 6 concludes.

2 Policy Gradient and Natural Actor Critic Methods

A Markov decision process (MDP) is defined by a tuple (S,A,P ,R) where S is
a set of states, A is a set of actions, P(s, a, s′) is the transition function which
denotes the probability of making a transition from state s to state s′ by taking
action a, R(s, a) is the expected reward function when taking action a in state
s. A policy is a probability distribution over actions conditioned on the state;
πθ(s, a) denotes the probability that policy π selects action a at state s. We
assume that the policy is parameterized with (a small number) of parameters
θ, and is differentiable with respect to these parameters, i.e. that ∂πθ(s, a)/∂θ
exists. The state-value function V π(s) is a mapping from states to real numbers,
where the value of a state represents the expected return starting from that
state, and following policy π; it is given by

V π(s) = Eat∼π

[∞∑
t=0

γtrt|s0 = s
]

where γ ∈ [0, 1] is the discount factor, rt is the reward received at time t, and at

denotes the action drawn from policy π at time t. Similarly, state-action value
function Qπ(s, a) is defined as the expected return when taking action a at state
s, and following policy π thereafter:

Qπ(s, a) = Eat∼π

[∞∑
t=0

γtrt|s0 = s, a0 = a
]

112 S. Girgin and P. Preux

Our aim is to find an optimal policy π∗ that maximizes the expected return

ρ(π) = E{
∞∑

t=0

γtrt|s0, π} =
∫
S
dπ(s)

∫
A
π(s, a)R(s, a)dsda

where dπ(s) =
∑∞

t=0 γ
tPr{st = s|s0, π} is the discounted distribution of states

under π1.
In policy gradient methods, an optimal policy is sought by an iterative pro-

cess; starting from an initial policy, at each iteration the gradient ∇θρ(πθk
) of

the expected return for the current policy πθ is estimated, and then the policy
parameters θk are updated in the direction of the gradient by gradient ascent

θk+1 = θk + αk∇θρ(πθk
) (1)

where αk is the learning rate. The estimation step is called policy evaluation,
and the update step is called policy improvement ; the entire process falls into
the general framework of policy iteration [2,3]. Policy gradient methods possess
two important properties, (i) small changes in θ results in small changes in the
policy and in the distribution of states under that policy, and (ii) if the gradient
estimate is unbiased and learning rates are square summable but not summable
(i.e.

∑∞
k=0 αk > 0 and

∑∞
k=0 α

2
k = c) then it is guaranteed to converge to a

(locally) optimal policy. The first property brings an important advantage over
value-function based methods2 as small changes in the value estimations may
lead to arbitrary changes in the associated policy, hindering convergence.

The critical problem that needs to be solved in the policy evaluation step is to
obtain a “good” estimate of the gradient. A simple way to do this is to use the
method of finite differences. In this approach, the policy parameters are varied
by small perturbations, and then roll-outs are performed for each perturbed
policy to generate estimates of the change in the expected return; regression of
perturbations onto these changes yields the gradient. The major drawback of this
approach is that the amount of perturbations usually differ for each parameter
and they must be chosen carefully for a successful estimation. Also, it is sensitive
to noise. An alternative approach is to apply likelihood ratio principle, which
leads to the policy gradient theorem stating that

∂ρ

∂θ
=

∫
S
dπ(s)

∫
A

∂π(s, a)
∂θ

(Qπ(s, a)− bπ(s))dsda (2)

where bπ(s) is a baseline function [4]. As there are no terms regarding the gradi-
ent of the state distribution dπ(s) with respect to θ, the gradient of the expected

1 When one is interested in maximizing the average reward rather than the discounted
case, we have ρ(π) = limn→∞ 1

n
E{rt|π} and dπ(s) becomes the stationary distribu-

tion of the states under π.
2 In value-function based methods, the focus is on parameterizing and approximating

the value function rather than the policy, and the policy is represented implicitly as
being greedy with respect to the estimated value function.

Basis Expansion in Natural Actor Critic Methods 113

return does not depend on changes in the distribution of states, and hence an un-
biased estimate can be obtained from states sampled from the state distribution
obtained by following π. If one uses the actual returns calculated over sample
trajectories to approximate Qπ(s, a), this formula reduces to the (episodic) RE-
INFORCE algorithm of Williams [5]. The baseline bπ(s) can be an arbitrary
function of s; it does not introduce any bias but can minimize the variance of
the estimate if chosen accordingly. In [4] and [6], it has been shown that the
Qπ(s, a) − bπ(s) term in Equation 2 can be replaced by a compatible linear
function approximation fπ

ω (s, a) of the form

fπ
ω (s, a) = ∇θ log π(s, a)Tω (3)

without affecting the bias of the estimation, giving

∂ρ

∂θ
=

∫
S
dπ(s)

∫
A

∂π(s, a)
∂θ

∇θ log π(s, a)T dsdaω (4)

=
∫
S
dπ(s)

∫
A
π(s, a)∇θ log π(s, a)∇θ log π(s, a)T dsdaω (5)

= F (θ)ω (6)

as ∇θπ(s, a) = π(s, a)∇θ log π(s, a). F (θ) is called the all-action matrix. Note
that, since ∫

A
π(s, a)fπ

ω (s, a) = 0 (7)

fπ
ω (s, a) actually approximates the advantage value function, i.e. in fact bπ(s) =
V π(s) and we have

fπ
ω ≈ Aπ(s, a) = Qπ(s, a)− V π(s) (8)

An important result regarding Equation 5 as demonstrated by Peters and Schaal
is that F (θ) corresponds to the Fisher information matrix [7]; this has an inter-
esting and useful consequence as we will see shortly. In [8], Amari showed that
for a function L(ω) defined on a parameter space S = {ω ∈ n}, if ω is not an
orthonormal coordinate system, i.e. S is a Riemannian space, then the steepest
ascent direction of L(ω) in S is not equal to the gradient of L(ω) with respect
to ω, ∇ωL(ω), but is given by

∇̃ωL(ω) = G−1(ω)∇ωL(ω) (9)

where G(ω) denotes the Fisher information matrix. ∇̃ωL(ω) is called the natural
gradient. It is guaranteed that the angle between ∇ωL(ω) and ∇̃ωL(ω) is never
larger than ninety degrees and following the natural gradient convergences to a
(local) optimum. In most cases, the steepest descent with respect to the natural
gradient seems more efficient than normal gradients, especially when the gradi-
ents are small and do not point directly toward the optimal solution. Normally,
one needs to construct the Fisher information matrix and find its inverse in or-
der to calculate the natural gradient. However, in case of policy gradient with

114 S. Girgin and P. Preux

compatible function approximation, combining Equations 1, 5 and 9, Fisher in-
formation matrix and its inverse cancel each other, and one ends up with a very
simple update rule for the policy parameters:

θk+1 = θk + αkω (10)

where the update terms become the weights of fπ
θ (s, a).

In order to take advantage of this simple formulation and convert it into an
effective reinforcement learning algorithm, we need to be able to approximate
fπ

θ (s, a) from the samples generated from a model or collected from interactions
with the environment. Unlike state-value and state-action value functions, it is
not possible to learn fπ

θ (s, a) solely using temporal difference like bootstrapping
methods, as the value of states, i.e. V π(s), that are required for comparison
are subtracted in the advantage function. In order to remedy this situation, one
approach might be to have a separate approximation for the value function. Note
that, by definition Qπ(s, a) = fπ

θ (s, a) + V π(s), and the Bellman equation can
be written as

fπ
θ (s, a) + V π(s) = R(s, a) + γ

∫
S
P (s, a, s′)V π(s′)ds (11)

Given a set of samples (st, at, rt, st+1), the Natural Actor-Critic (NAC) algo-
rithm proposed by Peters et. al uses a linear function approximation of the
value function in the form of

V π(s) = φ(s)T v

with appropriate basis functions φ(s) to construct a set of simultaneous linear
equations

∇θ log π(st, at)Tω + φ(st)T v ≈ rt(s, a) + γφ(st+1)T v (12)

and solves Equation 11 using the LSTD(λ) policy evaluation algorithm [7,9].
LSTD(λ) is shown to converge with probability one for function approximation,
hence with appropriate basis functions NAC also succeeds in finding the true
natural gradient and converges to a (local) optima in the Riemannian space.
In this approach, not only the parametrization of the policy but also the basis
functions chosen to represent the value function play an important role, and have
a direct effect on the quality of the solution. An alternative approach, which
does not require this dependency is the episodic Natural Actor-Critic (eNAC)
algorithm [9,7]. Given a trajectory of samples (s0, a0, r0, s1) . . . (sn, an, rn, sn+1),
by summing Equation 12 over the trajectory one obtains:

n∑
t=0

γtAπ(st, at) = V π(s0) +
n∑

t=0

γtrt − γn+1V π(sn+1)

Ignoring the last term, and assuming a single start state s0 for all trajectories,
from a set of trajectories we can define a set of linear equations

n∑
t=0

γt∇θ log π(st, at)Tω + ρ =
n∑

t=0

γtrt

Basis Expansion in Natural Actor Critic Methods 115

with |ω|+1 unknowns, which can be solved in a least squares sense to find the
natural gradient.

Natural policy gradient based methods have been shown to be quite effec-
tive and perform better than regular policy gradient methods in various settings
under the condition that the learning process is started with a reasonable pol-
icy [7,10,11]. Nonetheless, the performance of the resulting policies, at the end,
depend on their structure and expression power. In practice, policies are gener-
ally represented as parametric linear mixtures of basis functions; consequently,
the set of basis functions and the initial weights emerge as the determining fac-
tors. As the complexity of the problem increases, it also gets progressively more
difficult to come up with a good set of basis functions. Generic approaches, such
as regular grids or regular radial basis function networks, which are quite suc-
cessful in small problems, become impractical due to the exponential growth of
the state and action spaces with respect to their dimension. Therefore, given a
problem, it is highly desirable to determine a compact set of such basis functions
automatically. In the next section, we will first describe a particular class of a
function approximator and learning architecture called cascade-correlation net-
works, and then we will present how they can be utilized in order to iteratively
construct new basis functions.

3 Cascade Correlation Networks and Basis Function
Construction

Cascade correlation is both an architecture and a supervised learning algorithm
for artificial neural networks introduced by [12]. It aims to overcome step-size
and moving target problems that negatively affect the performance of back-
propagation learning algorithm. Similar to traditional neural networks, the neu-
ron is the most basic unit in cascade correlation networks. However, instead of
having a predefined topology with the weights of the fixed connections between
neurons getting adjusted, a cascade correlation network starts with a minimal
structure consisting only of an input and an output layer, without any hidden

o

i1

i2

o

i1

h1

i2

o

i1

h1
h2

i2

(a) (b) (c)

Fig. 1. (a) Initial configuration of a simple cascade-correlation network with two inputs
and a single output (in gray). (b) and (c) show the change in the structure of the
network as two new hidden nodes are subsequently added. Solid edges indicate input
weights that stay fixed after the candidate training phase.

116 S. Girgin and P. Preux

layer. All input neurons are directly connected to the output neurons (Figure 1a).
Then, the following steps are taken:

1. All connections leading to output neurons are trained on a sample set and
corresponding weights (i.e. only the input weights of output neurons) are de-
termined by using an ordinary learning algorithm until the error of the net-
work no longer decreases. This can be done by applying the regular “delta”
rule, or using more efficient methods such as quick-prop or rprop. Note that,
only the input weights of output neurons (or equivalently the output weights
of input neurons) are being trained, therefore there is no back-propagation.

2. If the accuracy of the network is above a given threshold then the process
terminates.

3. Otherwise, a set of candidate units is created. These units typically have
non-linear activation functions, such as sigmoid or Gaussian. Every candidate
unit is connected with all input neurons and with all existing hidden neurons
(which is initially empty); the weights of these connections are initialized
randomly. At this stage the candidate units are not connected to the output
neurons, and therefore are not actually active in the network. Let s denote a
training sample. The connections leading to a candidate unit are trained with
the goal of maximizing the sum S over all output units o of the magnitude
of the correlation between the candidate units value denoted by vs, and the
residual error observed at output neuron o denoted by es,o. S is defined as

S =
∑

o

|
∑

s

(vs − v)(es,o − eo)|

where v and eo are the values of vs and es,o averaged over all samples, respec-
tively. As in step 1, learning takes place with an ordinary learning algorithm
by performing gradient ascent with respect to each of the candidate units
incoming weights:

∂S

∂wi
=

∑
s,o

(es,o − eo)σof
′
sIi,s

where σo is the sign of the correlation between the candidates value and
output o, f ′s is the derivative for sample s of the candidate units activation
function with respect to the sum of its inputs, and Ii,s is the input the
candidate unit received from neuron i for sample s. Note that, since only
the input weights of candidate units are being trained there is again no need
for back-propagation. Besides, it is also possible to train candidate units in
parallel since they are not connected to each other. By training multiple
candidate units instead of a single one, different parts of the weight space
can be explored simultaneously. This consequently increases the probability
of finding neurons that are highly correlated with the residual error. The
learning of candidate unit connections stops when the correlation scores no
longer improve or after a certain number of passes over the training set. Now,
the candidate unit with the maximum correlation is chosen, its incoming
weights are frozen (i.e. they are not updated in the subsequent steps) and it

Basis Expansion in Natural Actor Critic Methods 117

is added permanently to the network by connecting it to all output neurons
(Figure 1b and c). The initial weights of these connections are determined
based on the value of correlation of the unit. All other candidate units are
discarded.

4. Return back to step 1.

Until the desired accuracy is achieved at step 2, or the number of neurons
reaches a given maximum limit, a cascade correlation network completely self-
organizes itself and grows as necessary. One can easily observe that, by adding
hidden neurons one at a time and freezing their input weights, training of both
the input weights of output neurons (step 1) and the input weights of candidate
units (step 3) reduce to one step learning problems. Since there is no error to
back-propagate to previous layers the moving target problem is effectively elimi-
nated. Also, by training candidate nodes with different activation functions and
choosing the best among them, it is possible to build a more compact network
that better fits the training data.

One observation here is that, unless any of the neurons has a stochastic acti-
vation function, the output of a neuron stays constant for a given sample input.
This brings the possibility of storing the output values of neurons which in re-
turn reduces the number of calculations in the network and improve the efficiency
drastically compared to traditional multi-layer back-propagation networks, es-
pecially for large data sets. But more importantly, each hidden neuron effectively
becomes a permanent feature detector, or to put it another way, a basis function
in the network; the successive addition of hidden neurons in a cascaded manner
allows, and further, facilitates the creation of more complex feature detectors
that helps to reduce the error and better represent the functional dependency
between input and output values. We would like to point out that, this entire
process does not require any user intervention and is well-matched to our primary
goal of determining a set of good basis functions for representing the policy and
the corresponding compatible advantage value function in natural actor-critic
methods.

As described in Section 2, in Natural Actor-Critic methods, we have a param-
eterized policy and a compatible approximation to the advantage value function,
which is a linear combination of the partial derivatives of the logarithm of the
policy with respect to the policy parameters. For the sake of simplicity, in the
discussion below we will consider the case in which there is only one control
variable; the extension to multiple control variables is trivial and easily follows.
We will assume that the stochastic policy with policy parameters θ is defined
by a set of basis functions ϕ = {ϕ1(s), . . . , ϕn(s)}, each basis function being a
function of state, and is in the form of a normal distribution with mean ϕT θ
and variance σ2:

πθ(s, a) = N (ϕT θ, σ2) (13)

For this specific case, we have

∇θ log π(s, a) =
2c
σ2 (a−ϕT θ)ϕ (14)

118 S. Girgin and P. Preux

where c is a normalization constant, and the compatible advantage value function
becomes

fπ
ω (s, a) = ∇θ log π(s, a)Tω =

[
2c
σ2 (a−ϕT θ)ϕ

]T

ω (15)

Our aim here is to extend the set of basis functions ϕ by adding new basis
functions, so that we would obtain better policies. In order to accomplish this
goal, we need to be able to assess the effect of potential candidate basis functions
on the system and choose the most promising one. One possible way to do this
would be to take advantage of the inherent relationship between the policy and
the compatible advantage value function. If the error in the estimation of the
advantage value function can be determined, then useful basis functions such
that their influence on advantage value function through the gradient of the
logarithm of the policy would reduce this error, can be constructed and used to
improve the policy.

Now, for a particular reinforcement learning problem, given a set of basis
functions ϕ = {ϕ1(s), . . . , ϕn(s)} and an initial set of policy parameters θ0, we
can run episodic Natural Actor-Critic algorithm to find a sequence of natural
gradient estimates and apply gradient ascent to obtain corresponding policies
at each iteration. Let ωt, θt, and πθt denote the natural policy gradient, policy
parameters and policy at iteration t, respectively. Note that, by definition the
gradient of the logarithm of the policy for the action corresponding to the mean
of the normal distribution, i.e. ϕT θ, in Equation 13 is the zero vector; this means
that for policy πθt , the state-action tuple (s,ϕT (s)θt) has an advantage value
of 0. Let ω be an estimation of natural policy gradient for πθt over a set of
trajectories, and θ = θt + εω be an updated set of policy parameters, where ε
denotes the step size. By definition, we have

ϕT (s)θ = ϕT (s)θt + εϕTω

that is the mean of the normal distribution moves by an amount of εϕTω at
state s. By putting ϕT (s)θ in Equation 15, we obtain an advantage difference of

fπ
ω (s,ϕT (s)θ) = εϕT (s)ωϕT (s)ωt

which can be used as an estimate error in the advantage value of the state-
action tuple (s,ϕT (s)θt). Once we have the error estimates, we can then employ
cascade correlation learning in order to construct the basis functions. Let N be
a cascade correlation network with n inputs, where n is the number of initial
basis functions, and a single output. We will not be using the output node, but
only input and hidden nodes, as the parameters of the policy and the compatible
advantage value function are determined by the eNAC algorithm. Initially, the
network does not have any hidden neurons and all input neurons are directly
connected to the output neuron; the activation function of the ith input neuron is
set ϕi, i.e. when fed with state s they output ϕi(s). For each sample of the given
set of trajectories, in the cascade correlation network we input s to the input
nodes, set εϕT (s)ωϕT (s)ωt as the residual output error, and train candidate

Basis Expansion in Natural Actor Critic Methods 119

units that are highly correlated with the residual output error. Note that, in
Equation 15 (a−ϕT θ) term is common for all basis functions, and hence there is
a linear dependency between the candidate units and the compatible advantage
value function. At the end of the training phase, the candidate unit having
the maximum correlation is added to the network by transforming it into a
hidden neuron and becomes the new basis function ϕn+1; ϕm+1(s, a) can be
calculated by feeding s as input to the network and determining the activation
value of the hidden neuron. The parameter vectors θ and ω are also expanded.
By continuing eNAC training, one can calculate the natural policy gradient
and update the current policy, which now is represented by one more basis
functions and potentially more powerful. This process can be repeated at certain
intervals, introducing a new basis function at time, until a policy with adequate
performance is obtained or new functions do not improve the exiting policy. In
this hybrid learning system, the basis functions are determined by the cascade
correlation network, and the corresponding parameters of the policy and the
advantage value function are regulated by the natural actor-critic algorithm.
Note that, the values of all basis functions for a given (s, a) tuple can be found
with a feed-forward run over the network, and as stated before can be cached
for efficiency reasons if desired.

4 Experiments

We have evaluated the proposed method on a new variant of the well known
cart-pole problem, called spring cart-pole. Spring cart-pole is a dynamica system
where the state is defined by the position and velocity of the elements of the
system, and actions (applied forces) define the next state: it is a non-linear
control task with continuous state spaces. In spring cart-pole, there are two
carts, instead of one in the original version, that are connected to each other by
a spring. The spring restricts the movement of carts with respect to each other,
and makes the problem more complex. Both carts try to balance their own poles
in upright position while staying on the track and staying close to each other.
An episode ends if one of the carts move out of the boundary of track, move
very close to or far away from the other cart. The eight state variables are the
angles of the poles and their angular speed, and the position of the carts and
their velocity. The reward is equal to sum of the cosine of the angle of the poles.
Forces that can be applied to the carts are limited to [-2,2].

In cascade correlation network, we trained an equal number of candidate units
having Gaussian and sigmoid activation functions using RPROP method [13].
In RPROP, instead of directly relying on the magnitude of the gradient for the
updates (which may lead to slow convergence or oscillations depending on the
learning rate), each parameter is updated in the direction of the corresponding
partial derivative with an individual time-varying value. The update values are
determined using an adaptive process that depends on the change in the sign of
the partial derivatives. We allowed at most 100 passes over the sample set during

120 S. Girgin and P. Preux

-100

 0

 100

 200

 300

 400

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

cu
m

ul
at

iv
e

re
w

ar
d

eNAC iteration

eNAC
eNAC w/ basis expansion

Fig. 2. eNAC using original state variables vs. eNAC with basis function expansion. A
new basis function is added after every 500 iterations, up to a number of 16. After 10
basis functions, the policy converges to a near optimal policy.

the training of candidate units, and employed the following parameters: !min =
0.0001,!ini = 0.01,!max = 0.5, η− = 0.5, η+ = 1.2.

Figure 2 shows the training results for the spring cart-pole problem averaged
over 40 runs. The policy parameters are updated by calculating the natural policy
gradient using 40 trajectories. For the simulations, we chose a rather complex
initial state in which the poles are in downright position, the first cart is stationed
in the middle of the track, and the second cart is half-way from it. Each trajectory
starts from a slightly perturbed initial state, and is limited to a length of 200 steps.
The initial policy parameters are set to 0. By employing the proposed method, a
new basis function is trained every 500 policy update using the cascade correlation
learning algorithm, and added to the set of basis functions of the policy. Every 5
policy update, we made a test run of 500 time steps to measure the performance of
the current policy. During testing the variance of the policy distribution is set to
0, i.e. stochasticity is removed. As can be seen from the figure, policies represented
by the automatically constructed basis functions outperform those that use the
original basis functions that fell short of attaining near-optimal levels. Note that,
the performance of the policies increase steadily, starting from as early as two
additional basis functions, which indicates that the proposed method is successful
in constructing useful basis functions from the existing ones.

5 Related Work

Basis function, or feature selection and generation is essentially an information
transformation problem; the input data is converted into another form that
“better” describes the underlying concept and relationships, and “easier” to

Basis Expansion in Natural Actor Critic Methods 121

process by the agent. As such, it can be applied as a preprocessing step to
a wide range of problems and have been in the interest of the data-mining
community, in particular for classification tasks (see [14]). Following the positive
results obtained using efficient methods that rely on basis functions (mostly,
using linear approximation architectures) in various domains, it also recently
attracted attention from the RL community. However, the existing research is
focused on constructing basis functions for approximating the value function,
and, contrary to our work presented in this paper, do not consider the direct
policy representation.

In [15], Menache et al. examined adapting the parameters of a fixed set of
basis functions (i.e, center and width of Gaussian radial basis functions) for
estimating the value function of a fixed policy. In particular, for a given set of
basis function parameters, they used LSTD(λ) to determine the weights of basis
functions that approximate the value function of a fixed control policy, and then
applied either a local gradient based approach or global cross-entropy method
to tune the parameters of basis functions in order to minimize the Bellman
approximation error in a batch manner. The results of experiments on a grid
world problem show that cross-entropy based method performs better compared
to the gradient based approach.

In [16], Keller et al. studied automatic basis function construction for value
function approximation within the context of LSTD. Given a set of trajectories
and starting from an initial approximation, they iteratively use neighborhood
component analysis to find a mapping from the state space to a low-dimensional
space based on the estimation of the Bellman error, and then by discretizing
this space aggregate states and use the resulting aggregation matrix to derive
additional basis functions. This tends to aggregate states that are close to each
other with respect to the Bellman error, leading to a better approximation by
incorporating the corresponding basis functions.

In [17], Parr et al. showed that for linear fixed point methods, iteratively
adding basis functions such that each new basis function is the Bellman error
of the value function represented by the current set of basis functions forms an
orthonormal basis with guaranteed improvement in the quality of the approxi-
mation. However, this requires that all computations are exact, in other words,
are made with respect to the precise representation of the underlying MDP.
They also provide conditions for the approximate case, where progress can be
ensured for basis functions that are sufficiently close to the exact ones. A new
basis function for each action is added at each policy-evaluation phase by di-
rectly using locally weighted regression to approximate the Bellman error of the
current solution.

In contrast to these approaches that make use of the approximation of the
Bellman error, including ours, the work by Mahadevan et al. aims to find policy
and reward function independent basis functions that captures the intrinsic do-
main structure that can be used to represent any value function [18,19,20]. Their
approach originates from the idea of using manifolds to model the topology of
the state space; a state space connectivity graph is built using the samples of

122 S. Girgin and P. Preux

state transitions, and then eigenvectors of the (directed) graph Laplacian with
the smallest eigenvalues are used as basis functions. These eigenvectors possess
the property of being the smoothest functions defined over the graph and also
capture the nonlinearities in the domain, which makes them suitable for repre-
senting smooth value functions.

To the best of our knowledge, the use of cascade correlation networks in rein-
forcement learning has rarely been investigated before. One existing work that
we would like to mention is by Rivest and Precup (2003), in which a cascade cor-
relation network together with a lookup-table is used to approximate the value
function in an on-line temporal difference learning setting [21]. It differs from
our way of utilizing the cascade correlation learning architecture to build basis
functions in the sense that in their case, cascade correlation network purely func-
tions as a cache and an approximator of the value function, trained periodically
at a slower scale using the state-value tuples stored in the lookup-table.

6 Conclusion

In this paper, we explored a new method that combines cascade correlation
learning architecture with episodic Natural-Actor Critic algorithm to find a set of
basis function that would lead to a better and more expressive representation for
the policy, and consequently results in improved performance. The experimental
results indicate that it is effective in discovering such functions. An important
property of the proposed method is that the basis function generation process
requires little intervention and tuning from the user.

We think that learning sparse representation for states in a very important
issue to tackle large reinforcement learning problems. A lot of work is still due to
get a proper, principled approach to achieve this, not mentioning the theoretical
issues that are pending. We pursue future work in this direction and also apply
the method to more complex domains.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998); A Bradford Book

2. Howard, R.: Dynamic programming and Markov processes. MIT Press, Cambridge
(1960)

3. Puterman, M.: Markov Decision Processes — Discrete Stochastic Dynamic Pro-
gramming. Probability and mathematical statistics. Wiley, Chichester (1994)

4. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods
for reinforcement learning with function approximation. In: Neural Information
Processing Systems (NIPS), pp. 1057–1063 (1999)

5. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning 8, 229–256 (1992)

6. Konda, V.R., Tsitsiklis, J.N.: On actor-critic algorithms. SIAM J. Control Op-
tim. 42(4), 1143–1166 (2003)

Basis Expansion in Natural Actor Critic Methods 123

7. Peters, J., Schaal, S.: Policy gradient methods for robotics. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, October 2006, pp. 2219–2225
(2006)

8. Amari, S.i.: Natural gradient works efficiently in learning. Neural Computa-
tion 10(2), 251–276 (1998)

9. Peters, J., Schaal, S.: Natural actor-critic. Neurocomput. 71(7-9), 1180–1190 (2008)
10. Bhatnagar, S., Sutton, R., Ghavamzadeh, M., Lee, M.: Incremental natural actor-

critic algorithms. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S. (eds.) Advances
in Neural Information Processing Systems, vol. 20, pp. 105–112. MIT Press, Cam-
bridge (2008)

11. Riedmiller, M., Peters, J., Schaal, S.: Evaluation of policy gradient methods and
variants on the cart-pole benchmark. In: IEEE International Symposium on Ap-
proximate Dynamic Programming and Reinforcement Learning, 2007. ADPRL
2007, pp. 254–261 (2007)

12. Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. In:
Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems. Denver
1989, vol. 2, pp. 524–532. Morgan Kaufmann, San Mateo (1990)

13. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation
learning: the rprop algorithm, vol. 1, pp. 586–591 (1993)

14. Guyon, I., Elisseff, A.: An introduction to variable and feature selection. Journal
of Machine Learning Research 3, 1157–1182 (2003)

15. Menache, I., Mannor, S., Shimkin, N.: Basis function adaptation in temporal dif-
ference reinforcement learning. Annals of Operations Research 134, 215–238 (2005)

16. Keller, P.W., Mannor, S., Precup, D.: Automatic basis function construction for
approximate dynamic programming and reinforcement learning. In: ICML, pp.
449–456. ACM, New York (2006)

17. Parr, R., Painter-Wakefield, C., Li, L., Littman, M.: Analyzing feature generation
for value-function approximation. In: ICML, pp. 737–744. ACM, New York (2007)

18. Mahadevan, S.: Representation policy iteration. In: UAI, pp. 372–379 (2005)
19. Johns, J., Mahadevan, S.: Constructing basis functions from directed graphs for

value function approximation. In: ICML, pp. 385–392. ACM, New York (2007)
20. Mahadevan, S., Maggioni, M.: Proto-value functions: A laplacian framework for

learning representation and control in markov decision processes. Journal of Ma-
chine Learning Research 8, 2169–2231 (2007)

21. Rivest, F., Precup, D.: Combining TD-learning with cascade-correlation networks.
In: Fawcett, T., Mishra, N. (eds.) ICML, pp. 632–639. AAAI Press, Menlo Park
(2003)

Reinforcement Learning with the Use of Costly Features

Robby Goetschalckx1, Scott Sanner2, and Kurt Driessens1

1 Declarative Languages and Artificial Intelligence,
Katholieke Universiteit Leuven, Leuven, Belgium

{robby,kurtd}@cs.kuleuven.be
2 National ICT Australia

Scott.Sanner@nicta.com.au

Abstract. In many practical reinforcement learning problems, the state space is
too large to permit an exact representation of the value function, much less the
time required to compute it. In such cases, a common solution approach is to com-
pute an approximation of the value function in terms of state features. However,
relatively little attention has been paid to the cost of computing these state fea-
tures. For example, search-based features may be useful for value prediction, but
their computational cost must be traded off with their impact on value accuracy.
To this end, we introduce a new cost-sensitive sparse linear regression paradigm
for value function approximation in reinforcement learning where the learner is
able to select only those costly features that are sufficiently informative to jus-
tify their computation. We illustrate the learning behavior of our approach using
a simple experimental domain that allows us to explore the effects of a range of
costs on the cost-performance trade-off.

1 Introduction

We examine cost-sensitive linear-value function approximation in a reinforcement learn-
ing context where certain state features are only available at a certain cost. This cost could
reflect time or other resources spent on the process of acquiring the feature information,
but we assume that this cost can be transformed into the same units used to represent
reward in the original reinforcement learning problem.

As a motivating example, consider an agent playing a game of perfect information
such as Backgammon or Othello where the opponent executes a stationary policy. The
agent knows the rules and thus has access to an accurate model of the environment, ex-
cept for the opponent policy, which we assume to be unknown. While any reinforcement
learning problem of this nature can be solved in theory by using an exact enumerated-
state representation of the value function, this is often infeasible in practice due to time
and space constraints. Thus, we must often resort to techniques for computing an ap-
proximation of the value function in terms of state features.

While value function approximation is well-addressed in the reinforcement learning
literature (c.f. Chapter 8 of [1]), the cost of feature computation is often considered
negligible and thus ignored. However, continuing our game-playing example, we note
that costly search-based state features may be useful for predicting the value of a state.
For instance, a useful state feature in a game might be the result of an n-ply expected

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 124–135, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Reinforcement Learning with the Use of Costly Features 125

minimax search. However, there will often be a limit on the time available for a game
player to make decisions – either for the entire game or per turn – after which the game
is forfeited. In such a setup, it is important to find a good trade-off between the cost of
computation necessary to make a decision and the quality of the resulting decision.

Various theoretical approaches are possible to model this trade-off. While the origi-
nal optimal reinforcement learning problem we consider can be modelled as a Markov
decision process (MDP), one might consider modelling the function approximation set-
ting as a partially observable MDP (POMDP) [2], using information-gathering actions
to represent the computation of costly features. In theory, an optimal policy for this
POMDP would select those features to compute at any decision stage in order to opti-
mally trade-off feature cost w.r.t. its impact on future reward. However, such a frame-
work requires embedding an already difficult-to-solve MDP inside a POMDP and then
solving that POMDP.1 Such an approach will not generally be feasible in practice.

Here we propose a more pragmatic approach where we learn the relative value of
features in an explicit way. To do this, we approximate the value function using cost-
sensitive sparse linear regression techniques, trading off prediction errors with the costs
induced by using a feature. While such an approach does not guarantee that the optimal
set of features will be chosen at any decision-stage w.r.t. the cost-performance trade-off,
it does guarantee that the prediction accuracy will improve by at least the total cost of
the features used.

2 Related Work

Cost-sensitive regression and cost-sensitive classification in non-sequential decision
making, supervised learning settings have been widely studied, for example in [3].
While [4] addresses one aspect of cost-sensitive sequential decision-making, it should
be noted that in their special case, cost is only associated with actions – not with ob-
serving state features – so standard reinforcement learning techniques can be applied
without modification. In our work, we specifically consider the case of reinforcement
learning with function approximation where state features are costly to compute. This
induces a more difficult problem in that standard reinforcement learning techniques
must be modified to trade off the cost of using a feature w.r.t. its impact on prediction
accuracy during value approximation.

Other work which handles reinforcement learning with costs is discussed in [5].
Here the costly features are considered to have binary values, which allows for the
construction of a cost-sensitive regression tree (related to a cost-sensitive classification
using a decision tree) where the value of a computed feature can be used to decide which
other features to use. In contrast, here we consider the case of linear-value function
approximation with real-valued costly features. In the presence of both binary and real-
valued features, these two approaches could be merged although such extensions are
beyond the scope of the current paper.

The value of information has been formalized by Howard [6] and can be used as a
framework to estimate the expected utility increase of observing a random variable (e.g.,
a feature) given prior information. The meta-reasoning paradigm [7] extends this idea

1 This is only one difficulty with the POMDP approach. See Section 2 for further discussion.

126 R. Goetschalckx, S. Sanner, and K. Driessens

to sequential decision-making by trading off the allocation of computational resources
over time w.r.t. the expected gain of using those resources. The difference between the
meta-reasoning paradigm and our work is that we do not (and for all practical purposes,
cannot) directly model the predictions of costly features since the ability to accurately
model them would preclude the need to actually compute them.

When an MDP has costly-observable state (i.e., not state features, but the underly-
ing state itself), the problem may be formally modeled as a POMDP. Variants of such
approaches are explored in [8] and [9]. However, such problems are inherently more
difficult than the case we consider here. In our case, the underlying problem we are
trying to solve is an MDP with fully observable state (zero-cost, by definition), not a
POMDP. Our difficulties with costly features only arise when considering the value
function approximation paradigm. While we could use a POMDP model to formalize
the decision-theoretic trade-off between feature computation and prediction accuracy
in this approximation, such an approach would be impractical: Not only would the
POMDP be intractably large to solve, without a model of information-gathering ac-
tions2, the POMDP solution would only become further complicated by the need to
perform belief-state updating on a model of such actions from experience. While an-
alytical solutions to related problems exist in theory (c.f., [10]), such approaches are
incapable of practically scaling beyond all but the smallest problems.

3 Reinforcement Learning with Costly Features

In this section, we review the general framework of function approximation in rein-
forcement learning and then proceed to describe our modifications to accommodate
costly features.

3.1 MDPs and Reinforcement Learning

We assume the decision-making environment to be a Markov decision process (MDP)
[11] with which an agent interacts by repeatedly executing an action in the current
state, receiving a reward signal and then stochastically transitioning to a successor state.
Formally, an MDP can be defined as a tuple 〈S,A, T,R, γ〉. S = {s1, . . . , sn} is a
finite set of fully observable states. A = {a1, . . . , am} is a finite set of actions. T :
S × A × S → [0, 1] is a stationary, Markovian transition function. We often express
T as the conditional probability distribution P (s′|s, a). We will assume that a reward
R : S × A → R is associated with every state and action. γ is a discount factor
s.t. 0 ≤ γ < 13 used to specify that a reward obtained t timesteps into the future is
discounted by γt.

A policy π : S → A specifies the action a = π(s) to take in each state s. The value
Qπ(s, a) of taking an action a in state s and then following the policy π thereafter can
be defined using the infinite horizon, expected discounted reward criterion:

2 If an accurate model of a costly information-gathering action existed, it could be substituted
in place of the action itself to obtain an equivalent zero-cost action.

3 With modifications to enforce that total accumulated reward is finite, γ = 1 could be accom-
modated.

Reinforcement Learning with the Use of Costly Features 127

Qπ(s, a) = Eπ

[∞∑
t=0

γt · rt

∣∣∣∣∣s0 = s, a0 = a

]
(1)

where rt is the reward obtained at time t (assuming s0 and a0 respectively represent the
state and action at t = 0). Then we can define a value function V π(s) = Qπ(s, π(s))
that represents the expected value obtained by starting in state s and acting according
to π.

The objective in an MDP is to find a policy π∗ such that ∀π, s. V π∗
(s) ≥ V π(s).

At least one such optimal policy is guaranteed to exist and, in addition, the following
Bellman optimality equation is known to hold for π∗ [11]:

V π∗
(s) = maxa∈A

{
R(s, a) + γ ·Eπ∗

[
V π∗

(st+1)
∣∣∣st = s

]}
In the reinforcement learning setting, the transition and reward model may not be ex-

plicitly known to the agent although they both can be sampled from experience. Here,
we assume the generalized policy iteration (GPI) framework that is known to capture
most reinforcement learning approaches [1]. GPI interleaves policy evaluation and pol-
icy update stages as follows:

Generalized Policy Iteration (GPI)

1. Start with arbitrary initial policy π0 and set i = 0.
2. Estimate Qπi(s, a) from experience (e.g., using Equation 1).
3. Let πi+1(s) = arg maxa∈A Qπi(s, a).
4. If termination criteria not met, let i = i + 1 and goto step 2.

Every reinforcement learning algorithm that is an instance of the above GPI algo-
rithm may prescribe its own method for performing each step and many such instances
are known to have strong convergence guarantees. For now, we keep our treatment of re-
inforcement learning with costly features as general as possible. Specifically, this means
that in the context of GPI, we can restrict our discussion of reinforcement learning with
costly features to Q-value estimation.

3.2 Cost-Sensitive Value Approximation

In practice, it is often infeasible to work with an enumerated state representation due
to time and space constraints. A common solution approach in this case is to resort
to value function approximation in step 2 of the GPI algorithm by defining relevant
state features. In this case, the agent does not directly observe the exact state s of the
environment. Instead, the agent has access to a set of state features F = {f1, . . . , fk},
where for each f ∈ F , f : S → R is an (apriori unknown) mapping from a state to
R. The benefits of this approach are well-known: (1) an accurate approximation of a
Q-function (and thus implicitly, a policy) can often be represented with |F | << |S| and
(2) a limited set of descriptive features enables generalization of learned value across
multiple states, leading to faster learning.

128 R. Goetschalckx, S. Sanner, and K. Driessens

However, as argued in Section 1 for the games setting, it is plausible to consider using
costly features such as those that perform search. Thus, we assume that each feature f
is associated with a cost function cf : S → R, which represents the cost of computing
feature f in state s.4 We assume that the feature cost functions cf and the reward R are
expressed in the same units. For a game where there is a fixed time available per move
(after which the game is forfeited), a feature cost could be set to a fraction of the loss
value corresponding to the time spent computing the feature.

In the setting of value function approximation with costly features, we must modify
our MDP solution criterion to consider both the original reward signal as well as the
cost of computing a particular choice of features F . To facilitate this modification, we
introduce a new meta-policy Π = 〈π,F〉 where π is the policy for the original MDP
and F : F ×S×A→ {true, false} is a feature selection function that indicates which
features should be selected when evaluating the Q-value for a given state and action.
Abusing notation slightly, we often use F(s, a) to directly denote the subset of features
F ′ ⊆ F selected for a given state s and action a.

However, there is one additional and important complication to value function ap-
proximation with costly features. Since we do not represent the policy explicitly, but
rather implicitly by evaluating a set of Q-functions, we must take into account the
cost of evaluating a set of Q-functions for policy π w.r.t. our feature selection crite-
rion F . In light of this issue and our previous definitions, we now formally define our
problem:

Definition 1 (Cost-sensitive Value Approximation). Given an MDP 〈S,A, T,R, γ〉,
a set of state features F and their related cost functions cf and a policy π.

Find a feature selection function F∗ for meta-policyΠ∗ = 〈π,F∗〉, such that

F∗ = argmax
F

{
Es∼P (s|π,F)

[
V 〈π,F〉(s)

]}
(2)

where P (s|π,F) is a state occupancy distribution induced for meta-policy 〈π,F〉 and

V 〈π,F〉(s) =

E〈π,F〉

⎡⎣ ∞∑
t=0

γt

⎛⎝rt − ∑
a′

t∈A

∑
f∈F(st,a′

t)

cf (st, a
′
t)

⎞⎠∣∣∣∣∣s0 = s

⎤⎦ (3)

In words, V 〈π,F〉(s) represents the infinite-horizon discounted reward starting from
state s and following policy π thereafter. In addition to the reward rt accumulated at
time t, this value definition also explicitly models the cost of computing the meta-policy
at time t via the cost of computing a Q-function for each action a′t w.r.t. F(st, a

′
t). The

objective itself is to find the feature selection function F that maximizes the value
V 〈π,F〉(s) for each state s, weighted by the occupancy probability of s w.r.t. the meta-
policy.

4 We can easily relax both the feature mapping and its cost function to be stochastic (e.g., for
randomized search-based features) since our reinforcement learning approach is sample-based.
We provide the deterministic case here to simplify our notation and presentation.

Reinforcement Learning with the Use of Costly Features 129

Perhaps one of the most interesting observations about value function approximation
with costly features is that even though π is assumed to be fixed, the actual policy exe-
cuted varies according to F . This occurs because in the function approximation setting,
the policy is computed implicitly w.r.t. Q-values, which are themselves modulated by a
feature selection function F . In this sense, it appears quite difficult to optimally com-
pute Definition 1 without exhaustive enumeration of all possible F thus requiring 2|F |

evaluations. This is intractable for sufficiently large |F | and thus we focus on approxi-
mate solutions with weaker optimality guarantees in the next section.

4 Sparse Linear-Value Approximation

So far we have not assumed a specific functional form for our value approximation.
However, from here out, we focus solely on linear value-approximation techniques,
not only because linear regression is one of the most widely used and well-understood
function approximation methods, but also because it admits elegant sparse solutions
that will be useful in minimizing feature usage, and thus feature cost.

We represent a value approximation V̂ 〈π,F〉
w (s) of V 〈π,F〉(s) from Equation 3 as a

linear combination of features with weights w = 〈w0, . . . , wk〉 with each wi ∈ R:

V̂ 〈π,F〉
w (s) = w0 +

∑
fi∈F(s)

wifi(s) (4)

Here F(s) is not considered to be action-dependent and thus we drop the action argu-
ment.

When a policy cannot be derived directly from a value function, we could use action-
dependent weights wa for all a ∈ A to learn a Q-value approximation for each action:

Q̂〈π,F〉
w (s, a) = wa,0 +

∑
fi∈F(s,a)

wa,ifi(s) (5)

For simplicity, we focus on direct value approximation in the following presentation
although the framework can be easily modified to handle Q-value approximation as
well.

4.1 Least Angle Regression Methods

Due to their sparsity properties, we focus on a class of linear regression techniques
collectively referred to as least-angle regression (LAR) methods, such as lasso and
forward stagewise regression [12].

In the context of linear-value approximation, LAR methods provide a solution to the
following linear regression problem with cost budget C where we define the indicator
function I[·] to take the value 1 when its argument · is true and 0 otherwise:

Minimize:
∑

s

P (s|π,F)
[
V̂ 〈π,F〉

w (s)− V 〈π,F〉(s)
]2

Subject to:

[∑
s

P (s|π,F)
k∑

i=0

(α|wi|+ I[wi �= 0] · cfi(s))

]
≤ C (6)

130 R. Goetschalckx, S. Sanner, and K. Driessens

Although notationally cumbersome, this optimization problem simply states that we
wish to minimize the sum-of-squared errors of the approximate value function V̂ 〈π,F〉

w (s)
w.r.t. samples from the true distribution V 〈π,F〉(s) weighted by state occupancy prob-
ability. The constraints simply state that the total sum of weights and feature costs for
non-zero weights should be less than C. Here, α is a constant indicating how important
weight regularization is relative to minimizing the costs. For ordinary LAR, this value
is equal to 1 (while the costs are zero). For our preliminary experiments as presented in
section 5, we chose α = 0.

At first, the budget C would seem to be an unnecessary since the feature costs are
already accounted for in the value function estimate. However, including this additional
constraint has two advantages: (1) the use of small budgets C encourage sparsity in the
weights, thereby maximizing the predictive power of the subset of features with non-
zero weights, and (2) by incrementally increasing C from 0 to ∞, we can greedily add
in new features from F , thus providing us with an efficient way to explore the entire
feature selection function without enumerating all possibilities.

Fortunately, the forward-stagewise regression solution to optimizing the above prob-
lems provides us with an efficient way of doing exactly this. We briefly describe this
below and refer the reader to the detailed discussion in [12] for more information on
this and related methods. Our adaptation of the forward-stagewise regression algorithm,
dubbed FOVEA, can be seen in Fig. 1.

Forward-stagewise Value Approximation (FOVEA)

1. Normalize all feature predictions in F to have 0 mean and a
variance of 1.

2. Initialize the step-size η to some small positive value.
3. Initialize F such that ∀s.F(s) = ∅.
4. Given a policy π and current F , collect a batch of data sam-

ples V 〈π,F〉(s) by executing meta-policy 〈π,F〉 (this implic-
itly generates samples with state distribution P (s|π,F)), ini-
tialize w0 with the average value of the batch (this gives the
residuals a mean of 0), and repeat the following:
(a) calculate the correlation score (absolute correlation with

the current residual r(s), minus the cost if the feature is
not yet included in the linear function) for every feature:

scorei =

˛̨̨̨
˛X

s

fi(s)r(s)

˛̨̨̨
˛− (1 − δi)

X
s

costi(s)

(here δi indicates whether the feature is already included
in the sum: if fi ∈ F , δi = 1, otherwise δi = 0).

(b) Find the feature fi with the highest score, and with
scorei ≥ 0, if no such feature found, halt algorithm

(c) If the fi was not yet included in F , let F = F ∪ {fi}
(d) Increment or decrement wi by η to reduce the residuals.

Fig. 1. The FOVEA Algorithm

Reinforcement Learning with the Use of Costly Features 131

Note that we do not normalize the target values, which is the normal procedure for
least-angle regression. Our reason for this is that by not dividing by the standard devia-
tion, the residuals at each step correspond to the actual errors. This is necessary for the
trade-off of cost and error.

It should be noted that the forward stage-wise approach is a greedy selection ap-
proach. Because of this, the approximation obtained might not be the optimal one in
all cases. A local optimum is guaranteed, however and the increase in value prediction
accuracy of using this greedy feature set is guaranteed to equal or exceed the cost of its
computation.

5 Experiments

A first setting we used for experiments is a simple deterministic corridor domain (fig-
ure 2). The state space consists of five rooms, labeled s1, . . . , s5. From each state two
actions, +1,−1 can be performed. Performing action +1 in state si for i < 5 leads to
si+1 and performing −1 in state si for i > 1 leads to si−1. All other actions take the
agent to the center s3. A reward of 1 is assigned for taking +1 in s5 and −1 is assigned
for taking action −1 in s1. All other rewards are equal to 0. We used a discount factor
γ = 0.9.

We provided seven state-action indicator features fi for 1 ≤ i ≤ 7 to the agent
where taking action a ∈ {+1,−1} in i results in fi+a = 1 with all remaining indicator
features set to 0. f0, f2, f3, f5 and f6 are free while f1 and f4 have a cost c. Further-
more two random number generators were provided to the agent, one which was free
and another one which had a high cost 0.5. Finally, the state-action feature indicators
f0, . . . , f6 were copied but now with the higher cost 0.5. We used FOVEA to approxi-
mate Q-values using the state-action features defined above. We used 100 samples for
each update unless stated otherwise. All results shown are averages over 10 runs.

A first experiment was performed with c = 0. This was an initial check to verify
that out algorithm works as expected. Indeed, the agent always learned to use the free,
informative features, and never to use the random features or the costly ones.

In a second experiment we varied the value of c over a range of 0 to 0.5. Increasing c
takes away the possibility for the agent to locate itself exactly without paying any cost:
if the agent does not pay c, it can not distinguish between x1 and x4. (Paying for only
f1 or f4 is enough, however: if the agent knows he’s not in one of the freely observable

s1 s2 s3 s4 s5

0 0 0 0

0000

+1

−1

Fig. 2. A simple domain with five linked states. Actions and their corresponding transitions are
labeled with their reward.

132 R. Goetschalckx, S. Sanner, and K. Driessens

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
M

S
E

pr
ed

ic
tio

n
co

st

c2

RMSE versus Cost

RMSE
cost

c2
2 c2

Fig. 3. Error the agent is aware of making versus the amount spent on costly features

states, and not in x4, he must be in x1 and vice versa.) We predicted that there is a
certain threshold-value for the cost where the agent will be undecided on using one of
the features f1 or f4 and paying the cost or not using these. If c is much lower, the agent
will always use one of the features, if it is much higher it will not pay off to spend the
cost in exchange for the information. For the forward-selection approach, this is exactly
what happened with a clear-cut phase transition near c = 0.185. This is actually the
theoretically correct value for the threshold in this problem domain. This can be clearly
seen in figure 3.

Here the cost the agent pays is compared with the prediction error the agent is aware
of making (the root mean squared error, or the 2-norm of the final residual). For very
low values of c, the agent actually computes both of the features while only one is
needed. As the costs are indeed very low, this does not pose a real problem. Using larger
batches to compute the new linear regression function would remedy this problem. For
low values of c, the agent keeps paying for one of the features (so the spent cost is equal
to c). When getting close to the threshold value of 0.185, however, the agent is no longer
willing to pay for the information. Indeed, for values higher than the threshold, the error
the agent is aware of making is lower than the cost of extra information. Given longer
training time and larger batches for the updates, the phase transition would become even
more clear.

For varying values of c the root mean square error of the predictions (compared to the
actual optimal values) as the number of examples increases is shown in figure 4. For the
value of 0.185 only in about half of the runs the agent was deeming it worth the invest-
ment. As this is the threshold value, for which the agent should in theory be undecided
whether or not to pay for the extra information, this is what was expected. For lower

Reinforcement Learning with the Use of Costly Features 133

 0

 0.5

 1

 1.5

 2

 0 2000 4000 6000 8000 10000

R
M

S
E

episodes

RMSE versus number of episodes

c2 = 0
c2 = 0.1

c2 = 0.15
c2 = 0.185

c2 = 0.5

Fig. 4. Evolution of the average prediction error compared to the ideal solution as the number of
episodes increases

 0.01

 0.1

 1

 0 100000 200000 300000 400000 500000

re
la

tiv
e

er
ro

r

episodes

relative error over time for various world sizes

size 7, 109 s
size 15, 234 s
size 21, 319 s
size 51, 537 s

Fig. 5. Relative error on the predictions for varying world sizes

values than this, the agent quickly learns that the feature is worth its cost. (In figure 4 re-
sults are shown for every 1000th episode. During the first 1000 episodes, there is a slight
difference for the lower costs, with faster convergence when the information is cheaper.)

For a third experiment the size of the domain was increased to see how the algorithm
scales up. The domain still consists of a corridor, with a positive and negative reward

134 R. Goetschalckx, S. Sanner, and K. Driessens

at respectively the rightmost and the leftmost room. The features provided were state-
action indicators as before. Each indicator had a cost inversely proportional to the world
size (this compensates for the inherently lower differences in value function for neigh-
boring states). In figure 5 one can see the sum of the relative errors on the predictions
of all state values as the number of episodes increases (note the logarithmic scale on the
vertical axis). The value approximation was updated each 10000 samples.

From this figure it is clear that for all these world sizes there was similar convergence
behavior. For the larger world (size 51), the convergence is slower, which is understand-
able, as it takes more time to propagate updates over the entire domain. In the legend
of figure 5 the run-times for these domains is also shown. As predicted, the runtime is
about linear in the number of features, in this case the size of the world.

6 Conclusions and Future Work

Faced with the task of value approximation in reinforcement learning with costly fea-
tures, we introduced a novel sparse linear-value approximation approach to efficiently
select the features for value prediction that are sufficiently informative to justify their
computation. In experimentation, our forward-stagewise value approximation algorithm
provided near-perfect trade-offs in value prediction exhibiting sharp phase transitions
at theoretical switchover points where feature computation no longer paid-off in reward
gain. Furthermore, our experiments demonstrated the ability of our approach to scale in
terms of performance and training samples over a range of problem sizes.

While we could only provide an initial investigation of reinforcement learning with
costly features in this work, our results warrant future experimentation on larger more
difficult problems such as game domains with search-based features. In addition to
such experimental evaluation, various efficiency enhancements can be explored in the
forward-stagewise regression framework to avoid discarding samples every time the
feature selection function is updated. Altogether, such advances should make possible a
new and useful paradigm for large-scale reinforcement learning in real-world domains
where useful features cannot always be assumed to be cost-free.

Acknowledgements

This research was sponsored by the fund for scientific research (FWO) of Flanders, of
which Kurt Driessens is a postdoctoral fellow, and by National ICT Australia.

References

1. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. The MIT Press, Cambridge
(1998)

2. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable
stochastic domains. Artificial Intelligence 101, 99–134 (1998)

3. Domingos, P.: Metacost: A general method for making classifiers cost-sensitive. In: Pro-
ceedings of the 5th International Conference on Knowledge Discovery and Data Mining, pp.
155–164 (1999)

Reinforcement Learning with the Use of Costly Features 135

4. Pednault, E., Abe, N., Zadrozny, B.: Sequential cost-sensitive decision making with rein-
forcement learning. In: KDD 2002: Proceedings of the International Conference on Knowl-
edge discovery and data mining, pp. 259–268. ACM, New York (2002)

5. Goetschalckx, R., Driessens, K.: Cost sensitive reinforcement learning. In: Kuter, U., Ab-
erdeen, D., Buffet, O., Stone, P. (eds.) Proceedings of the workshop on AI Planning and
Learning, pp. 1–5 (2007)

6. Howard, R.A.: Information value theory. IEEE Transactions on Systems Science and Cyber-
netics SSC-2, 22–26 (1966)

7. Russell, S., Wefald, E.: Principles of metareasoning. Artificial Intelligence 49 (1991)
8. Zubek, V.B., Dietterich, T.G.: A POMDP approximation algorithm that anticipates the need

to observe. In: Pacific Rim International Conference on Artificial Intelligence, pp. 521–532
(2000)

9. Fox, R., Tennenholtz, M.: A reinforcement learning algorithm with polynomial interaction
complexity for only-costly-observable mdps. In: AAAI, pp. 553–558 (2007)

10. Poupart, P., Vlassis, N., Hoey, J., Regan, K.: An analytic solution to discrete bayesian re-
inforcement learning. In: ICML 2006: Proceedings of the 23rd international conference on
Machine learning, pp. 697–704. ACM, New York (2006)

11. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley, New York (1994)

12. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Technical report,
Statistics Department, Stanford University (2002)

Variable Metric
Reinforcement Learning Methods

Applied to the Noisy Mountain Car Problem

Verena Heidrich-Meisner and Christian Igel

Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany
{Verena.Heidrich-Meisner,Christian.Igel}@neuroinformatik.rub.de

Abstract. Two variable metric reinforcement learning methods, the
natural actor-critic algorithm and the covariance matrix adaptation evo-
lution strategy, are compared on a conceptual level and analysed exper-
imentally on the mountain car benchmark task with and without noise.

1 Introduction

Reinforcement learning (RL) algorithms address problems where an agent is
to learn a behavioural policy based on reward signals, which may be unspe-
cific, sparse, delayed, and noisy. Many different approaches to RL exist, here we
consider policy gradient methods (PGMs) and evolution strategies (ESs). This
paper extends our previous work on analysing the conceptual similarities and
differences between PGMs and ESs [1].

For the time being, we look at single representatives of each approach that
have been very successful in their respective area, the natural actor critic algo-
rithm (NAC, [2,3,4,5]) and the covariance matrix adaptation ES (CMA-ES, [6]).
Both are variable metric methods, actively learning about the structure of the
search space. The CMA-ES is regarded as state-of-the-art in real-valued evolu-
tionary optimisation [7]. It has been successfully applied and compared to other
methods in the domain of RL [8,9,10,11,12]. Interestingly, recent studies com-
pare CMA-ES and variants of the NAC algorithm in the context of optimisation
[13], while we look at both methods in RL.

We promote the CMA-ES for RL because of its efficiency and, even more
important, its robustness. The superior robustness compared to other RL al-
gorithms has several reasons, but probably the most important reason is that
the adaptation of the policy as well as of the metric is based on ranking poli-
cies, which is much less error prone than estimating absolute performance or
performance gradients.

Our previous comparison of NAC and CMA-ES on different variants of the
single pole balancing benchmark in [1] indicate that the CMA-ES is more ro-
bust w.r.t. to the choice of hyperparameters (such as initial learning rates) and
initial policies compared to the NAC. In [1] the NAC performed on par with the
CMA-ES in terms of learning speed only when fine-tuning policies, but worse for

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 136–150, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Variable Metric Reinforcement Learning Methods 137

harder pole balancing scenarios. In this paper, we compare the two methods ap-
plied to the mountain car problem [14] to support our hypotheses and previous
findings. As the considered class of policies has only two parameters, this bench-
mark serves as some kind of minimal working example for RL methods learning
correlations between parameters. The performance of random search provides a
performance baseline in our study. In order to investigate the robustness of the
algorithms, we study the influence of noise added to the observations.

The paper is organised as follows. In section 2 we review the NAC algorithm
and the CMA-ES for RL. Section 3 describes the conceptual relations of these
two approaches and in section 4 we empirically compare the methods.

2 Reinforcement Learning Directly in Policy Space

Markov decision processes (MDP) are the basic formalism to describe RL prob-
lems. An MDP 〈S,A,P ,R〉 consists of the set of states S, the possible actions
A, the probabilities Pa

s,s′ that an action a taken in state s leads to state s′,
and the expected rewards Ra

s,s′ received when going from state a s to s′ after
performing an action a.

Partially observable Markov decision processes (POMDP) are a generalisation
of MDPs [15]. In a POMDP, the environment is determined by an MDP, but
the agent cannot directly observe the state of the MPD. Formally, a POMDP
can be described as a tuple 〈S,A,P ,R, Ω,O〉. The first four elements define
the underlying MDP, Ω is the set of observations an agent can perceive, and the
observation function O : S×A → Λ(Ω) maps a state and the action that resulted
in this state to a probability distribution over observations (i.e., O(s′, a)(o) is
the probability of observing o given that the agent took action a and landed in
state s′).

The goal of RL is to find a behavioral policy π such that some notion of
expected future reward ρ(π) is maximized. For example, for episodic tasks we can
define ρ(π)=

∑
s,s′∈S,a∈A d

π(s)π(s, a)Pa
s,s′Ra

s,s′ , where dπ(s) =
∑∞

t=0 γ
t Pr{st =

s | s0, π} is the stationary state distribution, which we assume to exist, st is
state in time step t, and γ ∈]0, 1] a discount parameter. The immediate reward
received after the action in time step t is denoted by rt+1 ∈ R.

Most RL algorithms learn value functions measuring the quality of an action
in a state and define the policy on top of these functions. Direct policy search
methods and PGMs search for a good policy in a parametrised space of functions.
They may build on estimated value functions (as PGMs usually do), but this is
not necessary (e.g., in ESs).

2.1 Natural Policy Gradient Ascent

Policy gradient methods operate on a predefined class of stochastic policies. They
require a differentiable structure to ensure the existence of the gradient of the
performance measure and ascent this gradient. Let the performance ρ(π) of the
current policy with parameters θ be defined as above. Because in general neither

138 V. Heidrich-Meisner and C. Igel

dπ, R, nor P are known, the performance gradient ∇θρ(π) with respect to the
policy parameters θ is estimated from interaction with the environment.

The policy gradient theorem [16] ensures that the performance gradient can be
determined from unbiased estimates of the state-action value function Qπ(s, a) =
E [

∑∞
t=0 γ

trt+1|π, s0 = s, a0 = a] and stationary distribution, respectively. For
any MDP we have

∇θρ =
∑
s∈S

dπ(s)
∑
a∈A

∇θπ(s, a)Qπ(s, a) . (1)

This formulation contains explicitly the unknown value function, which has to
be estimated. It can be replaced by a function approximator fv : S × A → R

(the critic) with real-valued parameter vector v satisfying the convergence con-
dition

∑
s∈S d

π(s)
∑

a∈A π(s, a) [Qπ(s, a)− fv(s, a)] ∇vfv(s, a) = 0. This leads
directly to the extension of the policy gradient theorem for function approxima-
tion. If fv satisfies the convergence condition and is compatible with the policy
parametrisation in the sense that ∇vfv(s, a) = ∇θπ(s, a)/π(s, a), that is,

fv = ∇θ ln(π(s, a))v + const , (2)

then the policy gradient theorem holds if Qπ(s, a) in equation 1 is replaced by
fv(s, a) [16].

Stochastic policies π with parameters θ are parametrised probability distri-
butions. In the space of probability distributions, the Fisher information matrix
F (θ) induces an appropriate metric suggesting “natural” gradient ascent in the
direction of ∇̃θρ(π) = F (θ)−1∇θρ(π). Using the definitions above, we have

F (θ) =
∑
s∈S

dπ(s)
∑
a∈A

π(s, a)∇θ ln(π(s, a))(∇θ ln(π(s, a)))T .

This implies ∇θρ = F (θ)v, which leads to the most interesting identity

∇̃θρ(π) = v .

In the following, we derive the NAC according to [4,5]. The function approx-
imator fv estimates the advantage function Aπ(s, a) = Qπ(s, a)− V π(s), where
V π(s) = E [

∑∞
t=0 γ

trt+1|π, s0 = s] is the state value function. Inserting this in
the Bellman equation for Qπ leads to

Qπ(st, at) = Aπ(st, at) + V π(st) =
∑
s′
P at

st,s′

(
Rat

st,s′ + γV π(s′)
)
. (3)

Now we insert equation 2 for the advantage function and sum up equation 3 over
a sample path:

T∑
t=0

γtAπ(st, at) =
T∑

t=0

γtrt+1 + γT+1V π(sT+1)− V (s0) .

Variable Metric Reinforcement Learning Methods 139

Algorithm 1. episodic Natural Actor-Critic
initialise θ = 0 ∈ Rn, Φ = 0 ∈ Remax×n+1, R = 0 ∈ Remax1

for k = 1, . . . do2

// k counts number of policy updates

for e = 1, . . . emax do3

// e counts number of episodes per policy update, emax > n
for t = 1, . . . tmax do4

// t counts number of time steps per episode

begin5

observe state st6

choose action at from πθ7

perform action at8

observe reward rt+19

end10

for i = 1, . . . , n do11

[Φ]e,i ← [Φ]e,i + γt ∂
∂θi

ln πθ(st, at)12

[R]e ← [R]e + γtrt+113

[Φ]e,n+1 ← 114

// update policy parameters:

θ ← θ + (ΦTΦ)−1ΦTR15

For an episodic task terminating in time step T it holds V π(sT+1) = 0. Thus,
we have after replacing Aπ with its approximation according to equation 2:

T∑
t=0

γt(∇θ ln π(st, at))Tv − V (s0) =
T∑

t=0

γtrt+1

For fixed start states we have V π(s0) = ρ(π) and this is a linear regression
problem with n + 1 unknown variables w = [vT, V π(s0)]T that can be solved
after n+ 1 observed episodes (where n is the dimension of θ and v):

⎡⎣T (e1)∑
t=0

[
γt∇θ lnπ(se1

t , a
e1
t)

]T
,−1

⎤⎦T

v =
T (e1)∑
t=0

γtre1
t+1

...
...⎡⎣T (en)∑

t=0

[
γt∇θ lnπ(sen

t , aen
t)

]T
,−1

⎤⎦T

v =
T (en)∑
t=0

γtren
t+1

The superscripts indicate the episodes. In algorithm 1 the likelihood information
for a sufficient number of episodes is collected in a matrix Φ and the return for
each episode in R. In every update step one inversion of the matrix ΦTΦ is
necessary.

140 V. Heidrich-Meisner and C. Igel

2.2 Covariance Matrix Adaptation Evolution Strategy

We consider ESs for real-valued optimisation [17,18,19,20]. Let the optimisation
problem be defined by an objective function f : Rn → R to be minimised, where
n denotes the dimensionality of the search space (space of candidate solutions,
decision space). Evolution strategies are random search methods, which itera-
tively sample a set of candidate solutions from a probability distribution over
the search space, evaluate these points using f , and construct a new probability
distribution over the search space based on the gathered information. In ESs,
this search distribution is parametrised by a set of candidate solutions, the par-
ent population with size µ, and by parameters of the variation operators that
are used to create new candidate solutions (the offspring population with size λ)
from the parent population.

In each iteration k, the lth offspring xl ∈ Rn is generated by multi-variate
Gaussian mutation and weighted global intermediate recombination, i.e.,

x
(k+1)
l =

〈
x

(k)
parents

〉
w

+ σ(k)z
(k)
l ,

where z
(k)
l ∼ N(0,C(k)) and

〈
x

(k)
parents

〉
w

=
∑µ

i=1 wix
(k)
ith-best-parent (a common

choice is wi ∝ ln(µ+ 1)− ln(i), ‖w‖1 = 1).
The CMA-ES, shown in algorithm 2, is a variable metric algorithm adapting

both the n-dimensional covariance matrix C(k) of the normal mutation distribu-
tion as well as the global step size σ(k) ∈ R+. In the basic algorithm, a low-pass
filtered evolution path p(k) of successful (i.e., selected) steps is stored,

p(k+1)
c ← (1 − cc)p(k)

c +
√

(cc(2− cc)µeff)
1
σ(k)

(〈
x

(k+1)
parents

〉
−
〈
x

(k)
parents

〉)
,

and C(k) is changed to make steps in the promising direction p(k+1) more likely:

C(k+1) ← (1− ccov)C(k) + ccov p(k+1)
c p(k+1)

c

T

(this rank-one update of C(k) can be augmented by a rank-µ update, see [21]).
The variables cc and ccov denote fixed learning rates. The learning rate ccov =

2
(n+

√
2)2

is roughly inversely proportional to the degrees of freedom of the covari-
ance matrix. The backward time horizon of the cumulation process is approxi-
mately c−1

c , with cc = 4/(n+ 4) linear in the dimension of the path vector. Too
small values for cc would require an undesirable reduction of the learning rate for
the covariance matrix. The variance effective selection mass µeff =

(∑µ
t=1 w

2
i

)−1

is a normalisation constant.
The global step size σ(k) is adapted on a faster timescale. It is increased if the

selected steps are larger and/or more correlated than expected and decreased if
they are smaller and/or more anticorrelated than expected:

σ(k+1) ← σ(k) exp

(
cσ
dσ

(
‖p(k+1)

σ ‖
E‖N(0, I)‖ − 1

))
,

Variable Metric Reinforcement Learning Methods 141

Algorithm 2. rank-one CMA-ES
initialise m(0) = θ and σ(0), evolution path p

(0)
σ = 0, p

(0)
c = 0 and covariance1

matrix C(0) = I (unity matrix)
for k = 1, . . . do2

// k counts number generations respective of policy updates

for l = 1, . . . , λ do3

x
(k+1)
l ∼ N(m(k), σ(k)2C(k)) // create new offspring4

// evaluate offspring:

for l = 1, . . . , λ do5

fl ← 0 // fitness of lth offspring6

for e = 1, . . . emax do7

// counts number of episodes per policy update

for t = 1, . . . tmax do8

// t counts number of time steps per episode

begin9

observe state st,10

choose action at from πθ,11

perform action at,12

observe reward rt+113

end14

fl ← fl + γt−1rt+115

// selection and recombination:

m(k+1) ←
Pµ

i=1 wix
(k)
i:λ16

// step size control:

p
(k+1)
σ ← (1 − cσ)p(k)

σ +
p

cσ(2 − cσ)µeffC(k)− 1
2 m(k+1)−m(k)

σ(k)17

σ(k+1) ← σ(k) exp cσ
dσ

„
‖p

(k+1)
σ ‖

E‖N(0,I)‖ − 1
«

18

// covariance matrix update:

p
(k+1)
c ← (1 − cc)p

(k)
c +

p
cc(2 − cc)µeff

m(k+1)−m(k)

σ(k)19

C(k+1) ← (1 − ccov)C(k) + ccovp
(k+1)
c p

(k+1)
c

T
20

and its (conjugate) evolutions path is:

p(k+1)
s ← (1− cσ)p(k)

s +
√
cσ(2− cσ)µeff C(k)−

1
2
(〈

x
(k+1)
parents

〉
−
〈
x

(k)
parents

〉)
Again, cσ = µeff+2

n+µeff+3 is a fixed learning rate and dσ = 1+2 max
(
0,
√

µeff−1
n+1

)
+cσ

a damping factor. The matrix C− 1
2 is defined as BD−1BT, where BD2BT is

an eigendecomposition of C (B is an orthogonal matrix with the eigenvectors of
C and D a diagonal matrix with the corresponding eigenvalues) and sampling
N(0,C) is done by sampling BDN(0, I).

The values of the learning rates and the damping factor are well consid-
ered and have been validated by experiments on many basic test functions
[21]. They need not be adjusted dependent on the problem and are therefore no

142 V. Heidrich-Meisner and C. Igel

hyperparameters of the algorithm. Also the population sizes can be set to de-
fault values, which are λ = max(4 + "3 lnn#, 5) and µ = "λ

2 # for offspring and
parent population, respectively [21]. If we fix C(0) = I, the only (also adaptive)
hyperparameter that has to be chosen problem dependent is the initial global
step size σ(0).

The CMA-ES uses rank-based selection. The best µ of the λ offspring form
the next parent population.

The highly efficient use of information and the fast adaptation of σ and C
makes the CMA-ES one of the best direct search algorithms for real-valued
optimisation [7]. For a detailed description of the CMA-ES see the articles by
Hansen et al. [6,21,22,23].

3 Similarities and Differences of NAC and CMA-ES

Fig. 1. Conceptual similarities and differences
of natural policy gradient ascent and CMA evo-
lution strategy: Both methods adapt a metric
for the variation of the policy parameters based
on information received from the environment.
Both explore by stochastic perturbation of poli-
cies, but at different levels.

Policy gradient methods and ESs
share several constituting aspects,
see Fig. 1. Both search directly
in policy space, thus the actor-
part in the agent is represented
and learnt actively. Yet, while
ESs are actor-only methods, the
NAC has an actor-critic archi-
tecture. In both approaches the
class of possible policies is given
by a parametrised family of func-
tions, but in the case of PGMs
the choice of the policy class is
restricted to differentiable func-
tions.

Exploration of the search space
is realised by random perturba-
tions in both ESs and PGMs.
Evolutionary methods usually
perturb a deterministic policy
by mutation and recombination,
while in PGMs the random vari-
ations are an inherent property
of the stochastic policies. In ESs
there is only one initial stochas-
tic variation per policy update.
In contrast, the stochastic policy
introduces perturbations in every

step of the episode. While the number n of parameters of the policy determines
the n-dimensional random variation in the CMA-ES, in the PGMs the usu-
ally lower dimensionality of the action corresponds to the dimensionality of the

Variable Metric Reinforcement Learning Methods 143

random perturbations. In ESs the search is driven solely by ranking policies and
not by the exact values of performance estimates or their gradients. The reduced
number of random events and the rank-based evaluation are decisive differences
and we hypothesise that they allow ESs to be more robust.

The CMA-ES as well as the NAC are variable-metric methods. A natural pol-
icy gradient method implicitly estimates the Fisher metric to follow the natural
gradient of the performance in the space of the policy parameters and chooses
its action according to a stochastic policy. Assuming a Gaussian distribution
of the actions this resembles the CMA-ES. In the CMA-ES the parameters are
perturbed according to a multi-variate Gaussian distribution. The covariance
matrix of this distribution is adapted online. This corresponds to learning an
appropriate metric for the optimisation problem at hand. After the stochastic
variation the actions are chosen deterministically.

Thus, both types of algorithms perform the same conceptual steps to obtain
the solution. They differ in the order of these steps and the level at which the
random changes are applied.

Policy gradient methods have the common properties of gradient techniques.
They are powerful local search methods and thus benefit from a starting point
close to an optimum. However, they are susceptible to being trapped in undesired
local minima.

4 Experiments

The experiments conducted in this paper extend our previous work described in
[1]. We have chosen the mountain car problem, which is a well-known benchmark
problem in RL requiring few policy parameters.

The objective of this task is to navigate an underpowered car from a valley to
a hilltop. The state s of the system is given by the position x ∈ [−1.2, 0.6] of the
car and by its current velocity v = ẋ ∈ [−0.07, 0.07], actions are discrete forces
applied to the car a ∈ {−amax, 0, amax}, where amax is chosen to be insufficient
to drive the car directly uphill from the starting position in the valley to the goal
at the top. The agent receives a negative reward of r = −1 for every time step.
An episode terminates when the car reaches the position x = 0.5, the discount
parameter is set to γ = 1.

To allow for a fair comparison, both methods operate on the same policy
class πdeter

θ (s) = θTs with s,θ ∈ R2 The continuous output acont of the policy
is mapped by the environment to a discrete action a ∈ A: a = 1 if acont > 0.1,
a = −1 if acont < 0.1, and a = 0 otherwise. We also considered the mountain
car problem with continuous actions, which, however, makes the task easier for
the CMA-ES and more difficult for the NAC. For learning, the NAC uses the
stochastic policy πstoch

θ (s, a) = N(πdeter
θ (s), σNAC), where the variance σNAC is

viewed as an additional adaptive parameter of the PGM. The NAC is evaluated
on the corresponding deterministic policy. In all experiments the same number of
emax = 10 episodes is used for assessing the performance of a policy. We analyse
two sets of start policies: θ = 0 (referred to as P0) and drawing the components

144 V. Heidrich-Meisner and C. Igel

of θ uniformly from [−100., 100] (termed P100). P0 lies reasonably close to the
optimal parameter values. In the original mountain car task the start states for
each episode are drawn randomly from the complete state space S (Srandom). We
additionally analyse the case (Sfixed) where all episodes start in the same state
with position x = −0.8 and velocity v = 0.01. Driving simply in the direction of
the goal is not sufficient to solve the problem for this starting condition.

As a baseline comparison we considered stochastic search, where policy pa-
rameters were drawn uniformly at random from a fixed interval and were then
evaluated in the same way as CMA-ES and NAC.

In a second set of experiments we add Gaussian noise with zero mean and
variance σnoise = 0.01 to state observations (i.e., now we consider a POMDP).

Mountain car task without noise. Figure 2 shows the performance of NAC and
CMA-ES on the mountain car problem. In the easiest cases (P0 with Srandom
and Sfixed) the NAC clearly outperforms the CMA-ES. Here the NAC is also

-450

-400

-350

-300

-250

-200

-150

-100

-50

 0

 0 1000 2000 3000 4000 5000

m
ed

ia
n

of
 R

et
ur

n

number of episodes

CMA, σ=10
NAC, σNAC=50, α=0.01

stochastic search

a)

-400

-350

-300

-250

-200

-150

-100

-50

 0

 0 1000 2000 3000 4000 5000

m
ed

ia
n

of
 R

et
ur

n

number of episodes

CMA, σ=10
NAC, σNAC=50, α=0.01

stochastic search

b)

-500

-450

-400

-350

-300

-250

-200

-150

-100

 0 1000 2000 3000 4000 5000

m
ed

ia
n

of
 R

et
ur

n

number of episodes

CMA, σ=10
NAC, σNAC=50, α=0.01

stochastic search

c)

-500

-450

-400

-350

-300

-250

-200

-150

-100

 0 1000 2000 3000 4000 5000

m
ed

ia
n

of
 R

et
ur

n

number of episodes

CMA, σ=10
NAC, σNAC=100, α=0.1

stochastic search

d)

Fig. 2. Performance of NAC and CMA-ES on the mountain car task without noise
based on 20 trials. a) CMA-ES, NAC, and stochastic search for initial policy P0 and
initial environment state Srandom (with best respective parameter values) without noise
b) CMA-ES, NAC, and stochastic search for initial policy P100 and initial environment
state Srandom (with best respective parameter values) without noise c) CMA-ES, NAC,
and stochastic search for initial policy P0 and initial environment state Sfixed (with best
respective parameter values) without noise d) CMA-ES, NAC, and stochastic search for
initial policy P100 and initial environment state Sfixed (with best respective parameter
values) without noise.

Variable Metric Reinforcement Learning Methods 145

-400

-350

-300

-250

-200

-150

-100

 0 1000 2000 3000 4000 5000

m
ed

ia
n

of
 R

et
ur

n

number of episodes

CMA, σ=10
NAC, σNAC=100, α=0.001

stochastic search

a)

-400

-350

-300

-250

-200

-150

-100

 0 1000 2000 3000 4000 5000

m
ed

ia
n

of
 R

et
ur

n

number of episodes

CMA, σ=10
NAC, σNAC=100, α=0.01

stochastic search

b)

-500

-450

-400

-350

-300

-250

-200

 0 1000 2000 3000 4000 5000

m
ed

ia
n

of
 R

et
ur

n

number of episodes

CMA, σ=10
NAC, σNAC=10, α=0.01

stochastic search

c)

-500

-450

-400

-350

-300

-250

-200

 0 1000 2000 3000 4000 5000

m
ed

ia
n

of
 R

et
ur

n

number of episodes

CMA, σ=10
NAC, σNAC=100, α=0.01

stochastic search

d)

Fig. 3. Performance of NAC and CMA-ES on the mountain car task with noisy obser-
vations based on 20 trials. a) CMA-ES, NAC, and stochastic search for initial policy
P0 and initial environment state Srandom (with best respective parameter values) with
noise b) CMA-ES, NAC, and stochastic search for initial policy P100 and initial envi-
ronment state Srandom (with best respective parameter values) with noise c) CMA-ES,
NAC, and stochastic search for initial policy P0 and initial environment state Sfixed

(with best respective parameter values) with noise d) CMA-ES, NAC, and stochastic
search for initial policy P100 and initial environment state Sfixed (with best respective
parameter values) with noise.

robust w.r.t changes of its hyperparameters (learning rate and initial variance).
But this changes when the policy is not initialised close to the optimal parameter
values and the parameters are instead drawn randomly. The CMA-ES performs
as in the former case, but now it is faster than the NAC in the beginning. The
NAC still reaches an optimal solution faster, but it is no longer robust. The
CMA-ES is more stable in all cases. Its performance does not depend on the
choice of initial policy at all and changing the value of its single parameter σ
as the initial step size only marginally effects the performance, see figure 4 and
tables 1 and 2.

Mountain car task with noise. For the next set of experiments we added noise
to the observed state, thus creating a more realistic situation, see figure 3. In
this case the CMA-ES clearly outperforms the NAC while still being robust with
respect to the initialisation of the policy parameters and the choice of the initial

146 V. Heidrich-Meisner and C. Igel

-400

-350

-300

-250

-200

-150

-100

-50

 0

 0 1000 2000 3000 4000 5000

m
ed

ia
n

of
 R

et
ur

n

number of episodes

CMA, σ=1
CMA, σ=10
CMA, σ=50

CMA, σ=100

a)

-350

-300

-250

-200

-150

-100

-50

 0

 0 1000 2000 3000 4000 5000

m
ed

ia
n

of
 R

et
ur

n

number of episodes

CMA, σ=1
CMA, σ=10
CMA, σ=50

CMA, σ=100

b)

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

 0

 0 1000 2000 3000 4000 5000

m
ed

ia
n

of
 R

et
ur

n

number of episodes

c)

-450

-400

-350

-300

-250

-200

-150

-100

-50

 0

 0 1000 2000 3000 4000 5000

m
ed

ia
n

of
 R

et
ur

n

number of episodes

d)

Fig. 4. Robustness against changes in the respective parameters on the mountain car
task without noise. To avoid overcrowding plots only the worst-case examples are shown
here: a) CMA-ES for initial policy P0 and initial environment state Srandom without
noise and σ ∈ [1, 10, 50, 100]. b) CMA-ES for initial policy P100 and initial environment
state Srandom without noise and σ ∈ [1, 10, 50, 100]. c) NAC for initial policy P0 and
initial environment state Srandom without noise, ordered from top to bottom by their
final value as given in table 1, d) NAC for initial policy P100 and initial environment
state Srandom without noise, ordered from top to bottom by their final value as given
in table 2.

Table 1. Final performance values of NAC on the mountain car task without noise
with initial policy P0 and starting states from Srandom after 5000 episodes. The medians
of 20 trials are reported.

α 0.0001 0.001 0.0001 0.0001 0.001 0.01 0.01 0.001
σNAC 10 10 100 50 100 1 10 1
final value −49.4 −49.4 −49.55 −49.55 −50.7 −50.75 −50.85 −51.4

α 0.001 0.01 0.01 0.1 0.1 0.1 0.1 0.0001
σNAC 50 50 100 10 100 1 50 1
final value −51.45 −52.35 −53.6 −73.3 −82.2 −98.55 −131.6 −147.45

Variable Metric Reinforcement Learning Methods 147

-400

-350

-300

-250

-200

-150

-100

 0 1000 2000 3000 4000 5000

m
ed

ia
n

of
 R

et
ur

n

number of episodes

CMA, σ=1
CMA, σ=10
CMA, σ=50

CMA, σ=100

a)

-400

-350

-300

-250

-200

-150

-100

 0 1000 2000 3000 4000 5000

m
ed

ia
n

of
 R

et
ur

n

number of episodes

CMA, σ=1
CMA, σ=10
CMA, σ=50

CMA, σ=100

b)

-450

-400

-350

-300

-250

-200

-150

-100

 0 1000 2000 3000 4000 5000

m
ed

ia
n

of
 R

et
ur

n

number of episodes

c)c)

-400

-350

-300

-250

-200

-150

-100

 0 1000 2000 3000 4000 5000

m
ed

ia
n

of
 R

et
ur

n

number of episodes

d)d)

Fig. 5. Robustness against changes in the respective parameters on the mountain car
task with noise. Again in order to avoid overcrowding plots only the worst-case exam-
ples are shown: a) CMA-ES for initial policy P0 and initial environment state Srandom

with noise and σ ∈ [1, 10, 50, 100]. b) CMA-ES for initial policy P100 and initial envi-
ronment state Srandom with noise and σ ∈ [1, 10, 50, 100]. c) NAC for initial policy P0

and initial environment state Srandom with noise, ordered from top to bottom by their
final value as given in table 3, d) NAC for initial policy P100 and initial environment
state Srandom with noise, ordered from top to bottom by their final value as given in
table 4.

Table 2. Final performance values of NAC on the mountain car task without noise
with initial policy P100 and starting states from Srandom after 5000 epsisodes

α 0.001 0.01 0.01 0.001 0.1 0.01 0.1 0.1
σNAC 100 50 100 50 50 10 100 10
final value −53.2 −54.25 −54.4 −59.15 −70.7 −84.45 −113.1 −117.25

α 0.0001 0.01 0.1 0.0001 0.0001 0.001 0.001 0.0001
σNAC 100 1 1 50 10 10 1 1
final value −200.4 −289.15 −307.35 −309.2 −314.85 −316.1 −352.05 −354

148 V. Heidrich-Meisner and C. Igel

Table 3. Final performance values of NAC on the mountain car task with noisy ob-
servations with initial policy P0 and starting states from Srandom after 5000 epsisodes

α 0.001 0.001 0.01 0.0001 0.001 0.001 0.01 0.01
σNAC 50 100 100 100 10 1 1 50
final value −133.17 −137.16 −137.83 −144.56 −164.71 −171.69 −174.34 −178.76

α 0.01 0.0001 0.0001 0.1 0.1 0.0001 0.1 0.1
σNAC 10 10 50 10 50 1 100 1
final value −184.03 −185.15 −201.84 −336.33 −353.91 −377.36 −377.66 −380.71

Table 4. Final performance values of NAC on the mountain car task with noisy obser-
vations with initial policy P100 and starting states from Srandom after 5000 epsisodes

α 0.01 0.001 0.001 0.01 0.1 0.0001 0.01 0.0001
σNAC 100 100 50 50 50 1 1 100
final value −131.81 −182.24 −212.23 −250.83 −308.37 −343.58 −349.77 −350.2

α 0.01 0.0001 0.001 0.1 0.1 0.0001 0.01 0.1
σNAC 10 50 1 10 100 10 10 1
final value −351.04 −358.48 −362.8 −367.38 −368.65 −368.83 −371.67 −378.16

step size, see figure 5 and tables 3 and 4. NAC performs at best on par with
stochastic search, for the more difficult policy initialisation P100 it is even worse.

5 Conclusion

The covariance matrix adaptation evolution strategy (CMA-ES) applied to re-
inforcement learning (RL) is conceptually similar to policy gradient methods
with variable metric such as the natural actor critic (NAC) algorithm. However,
we argue that the CMA-ES is much more robust w.r.t. the choice of hyperpa-
rameters, policy initialisation, and especially noise. On the other hand, given
appropriate hyperparameters, the NAC can outperform the CMA-ES in terms
of learning speed if initialised close to a desired policy. The experiments in this
paper on the noisy mountain car problem and our previous results on the pole
balancing benchmark support these conjectures. Across the different scenarios,
the CMA-ES proved to be a highly efficient direct RL algorithm. The reasons
for the robustness of the CMA-ES are the powerful adaptation mechanisms for
the search distribution and the rank-based evaluation of policies.

In future work we will extend the experiments to different and more complex
benchmark tasks and to other direct policy search methods.

Acknowledgement. The authors acknowledge support from the German Federal
Ministry of Education and Research within the Bernstein group “The grounding
of higher brain function in dynamic neural fields”.

Variable Metric Reinforcement Learning Methods 149

References

1. Heidrich-Meisner, V., Igel, C.: Similarities and differences between policy gradient
methods and evolution strategies. In: Verleysen, M. (ed.) 16th European Sympo-
sium on Artificial Neural Networks (ESANN), Evere, Belgium, pp. 149–154. d-side
publications (2008)

2. Peters, J., Vijayakumar, S., Schaal, S.: Reinforcement learning for humanoid
robotics. In: Proc. 3rd IEEE-RAS Int’l. Conf. on Humanoid Robots, pp. 29–30
(2003)

3. Riedmiller, M., Peters, J., Schaal, S.: Evaluation of policy gradient methods and
variants on the cart-pole benchmark. In: Proc. 2007 IEEE Internatinal Symposium
on Approximate Dynamic Programming and Reinforcement Learning (ADPRL
2007), pp. 254–261 (2007)

4. Peters, J., Schaal, S.: Applying the episodic natural actor-critic architecture to
motor primitive learning. In: Proc. 15th European Symposium on Artificial Neural
Networks (ESANN 2007), Evere, Belgium, pp. 1–6. d-side publications (2007)

5. Peters, J., Schaal, S.: Natural actor-critic. Neurocomputing 71(7-9), 1180–1190
(2008)

6. Hansen, N.: The CMA evolution strategy: A comparing review. In: Towards a new
evolutionary computation. Advances on estimation of distribution algorithms, pp.
75–102. Springer, Heidelberg (2006)

7. Beyer, H.G.: Evolution strategies. Scholarpedia 2(18), 1965 (2007)
8. Igel, C.: Neuroevolution for reinforcement learning using evolution strategies. In:

Congress on Evolutionary Computation (CEC 2003), vol. 4, pp. 2588–2595. IEEE
Press, Los Alamitos (2003)

9. Pellecchia, A., Igel, C., Edelbrunner, J., Schöner, G.: Making driver modeling at-
tractive. IEEE Intelligent Systems 20(2), 8–12 (2005)

10. Gomez, F., Schmidhuber, J., Miikkulainen, R.: Efficient non-linear control through
neuroevolution. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006.
LNCS, vol. 4212, pp. 654–662. Springer, Heidelberg (2006)

11. Siebel, N.T., Sommer, G.: Evolutionary reinforcement learning of artificial neural
networks. International Journal of Hybrid Intelligent Systems 4(3), 171–183 (2007)

12. Kassahun, Y., Sommer, G.: Efficient reinforcement learning through evolutionary
acquisition of neural topologies. In: Verleysen, M. (ed.) 13th European Symposium
on Artificial Neural Networks, pp. 259–266. d-side (2005)

13. Wierstra, D., Schaul, T., Peters, J., Schmidhuber, J.: Natural evolution strategies.
In: Computational Intelligence: Research Frontiers. IEEE Press, Los Alamitos (ac-
cepted, 2008)

14. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge (1998)

15. Kaelbling, L., Littman, M., Cassandra, A.: Planning and acting in partially ob-
servable stochastic domains. Artificial Intelligence 101(1-2), 99–134 (1998)

16. Sutton, R., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for re-
inforcement learning with function approximation. Advances in Neural Information
Processing Systems 12, 1057–1063 (2000)

17. Rechenberg, I.: Evolutionsstrategie: Optimierung Technischer Systeme nach
Prinzipien der Biologischen Evolution. Frommann-Holzboog (1973)

18. Schwefel, H.P.: Evolution and Optimum Seeking. Sixth-Generation Computer
Technology Series. John Wiley & Sons, Chichester (1995)

150 V. Heidrich-Meisner and C. Igel

19. Beyer, H.G., Schwefel, H.P.: Evolution strategies: A comprehensive introduction.
Natural Computing 1(1), 3–52 (2002)

20. Kern, S., Müller, S., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.: Learn-
ing probability distributions in continuous evolutionary algorithms – A compara-
tive review. Natural Computing 3, 77–112 (2004)

21. Hansen, N., Müller, S., Koumoutsakos, P.: Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evolutionary Computation 11(1), 1–18 (2003)

22. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2), 159–195 (2001)

23. Hansen, N., Niederberger, A.S.P., Guzzella, L., Koumoutsakos, P.: A method for
handling uncertainty in evolutionary optimization with an application to feedback
control of combustion. IEEE Transactions on Evolutionary Computation (in press,
2008)

Optimistic Planning of Deterministic Systems

Jean-François Hren and Rémi Munos

SequeL project, INRIA Lille - Nord Europe
40 avenue Halley, 59650 Villeneuve d’Ascq, France
{jean-francois.hren,remi.munos}@inria.fr

Abstract. If one possesses a model of a controlled deterministic system,
then from any state, one may consider the set of all possible reachable
states starting from that state and using any sequence of actions. This
forms a tree whose size is exponential in the planning time horizon.
Here we ask the question: given finite computational resources (e.g. CPU
time), which may not be known ahead of time, what is the best way
to explore this tree, such that once all resources have been used, the
algorithm would be able to propose an action (or a sequence of actions)
whose performance is as close as possible to optimality? The performance
with respect to optimality is assessed in terms of the regret (with respect
to the sum of discounted future rewards) resulting from choosing the
action returned by the algorithm instead of an optimal action. In this
paper we investigate an optimistic exploration of the tree, where the most
promising states are explored first, and compare this approach to a naive
uniform exploration. Bounds on the regret are derived both for uniform
and optimistic exploration strategies. Numerical simulations illustrate
the benefit of optimistic planning.

1 Introduction

This paper is concerned with the problem of making the best possible use of
available numerical resources (such as CPU time, memory, number of calls to
a black-box model, ...) in order to solve a sequential decision making problem
in deterministic domains. We aim at designing anytime algorithms, i.e. which
return higher accuracy solutions whenever additional resources are provided.
To fix the setting, we are interested in generating a near-optimal policy for a
deterministic system with discounted rewards, under finite action space but large
state space (possibly infinite). We assume that we have a generative model of
the state dynamics and rewards.

The approach consists in considering at each time-step t, the look-ahead tree
(which may be constructed from our model) of all possible reachable states when
using any sequence of actions, starting from xt. Then a search is performed in
this tree by using a specific exploration strategy. We address the question of how
should one explore this tree such that after a finite number of numerical resources
(here we will consider the number of node expansions or node transitions, which
is directly related to the CPU time, or the number of calls to our model), we
would be able to make the best possible decision about the action (or sequence

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 151–164, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

152 J.-F. Hren and R. Munos

of actions) to choose from state xt. This action (or sequence) is subsequently ex-
ecuted in the real world, and the overall process is repeated from the next state
xt+1. This is close in spirit to the sparse sampling algorithm of [KMN02], where
a sampling device is used to explore the look-ahead tree and generate a near op-
timal action with high probability. Their setting is more general than ours since
they consider general Markov Decision Processes, whereas we restrict ourself to
deterministic dynamics and rewards (we will consider the stochastic case in fu-
ture work). However the purpose of our study is the possible clever exploration
of the tree, whereas they only consider uniform exploration. Empirical works,
such as [PG04], suggest that non-uniform exploration may greatly improve the
performance of the resulting policy, given a fixed amount of computation.

The bounds on the performance we obtain here do not depend on the di-
mension of the state space, contrarily to usual (possibly approximate) Dynamic
Programming and Reinforcement Learning approaches (where a close-to-optimal
policy results from the approximation of a value function over the whole domain),
see [Put94, BT96, SB98], which are subject to the curse of dimensionality. How-
ever our bounds scale with the branching factor of some related trees and the time
horizon 1/(log 1/γ) (where γ is the discount factor). The performance measure
we consider here is the regret R(n), which is the performance loss (with respect
to optimality) of the decision returned by the algorithm after having explored
the tree using n units of computational resources. This notion will be made pre-
cise in the next section. If we consider a uniform exploration of the tree, one
obtains the (upper and lower) bounds on the regret: R(n) = Θ(n−

log 1/γ
log K), where

K is the number of actions (the branching factor of the full look-ahead tree). We
thus expect such approaches to be interesting (compared to value function-based
approaches) when the state space is huge but the number of actions is relatively
small.

In this paper we investigate an optimistic exploration of the tree, where
the most promising nodes are explored first. The idea is to explore at each
round the node that has a possibility of being the best (which motivates the
term “optimistic”), in the sense of having the highest upper-bound. The idea
of selecting actions based on upper confidence bounds (UCB) dates to early
work in multi-armed bandit problems, see e.g. [Rob52, LR85], and more recently
[ACBF02]. Planning under uncertainty using UCB has been considered in [KS06]
and the resulting algorithm UCT (UCB applied to Trees) has been successfully
applied to the large scale tree search problem of computer-go, see [GWMT06].
However, regret analysis shows that UCT may perform very poorly because of
overly-optimistic assumptions of the bounds, see [CM07]. Our work is close in
spirit to the BAST (Bandit Algorithm for Smooth Trees) algorithm of [CM07],
where we use the inherent smoothness of the look-ahead tree (which comes from
the fact that we consider the sum of discounted rewards along the paths) to
settle true upper-bounds on the nodes value. Using this optimistic exploration,
our main result is an upper-bound on the regret R(n) = O(n−

log 1/γ
log κ), where

κ ∈ (1,K] is the branching factor of a related subtree, composed of all the nodes
that will eventually have to be evaluated in order to decide whether they belong

Optimistic Planning of Deterministic Systems 153

to an optimal path or not. In particular, the optimistic exploration is never
worst than the uniform one (in some sense made precise later), and much better
whenever κ is smaller than K and close to 1. We show that κ is also related
to the proportion of near-optimal paths in the full look-ahead tree, and that in
hard instances of search problems, κ is small compared to K, which increases the
benefit of using optimistic rather than uniform exploration for complex problems.
We further show that in some non-trivial cases, κ = 1, and exponential rates are
derived.

In the next section, we introduce the notations and motivations for the tree
exploration problem. Then we consider the uniform and optimistic exploration
strategies. We conclude the paper by numerical experiments illustrating the ben-
efit of the optimistic exploration.

2 Planning Under Finite Numerical Resources

We are interested in making the best possible use of available numerical resources
for decision making. For that purpose, we assume that we possess a generative
model that can be used to generate simulated transitions and rewards. The
action-selection procedure (call it A) takes as input the current state of the
system and outputs an action A(n) (or a sequence of actions, but we will focus
in this paper on the single output action case) using a finite number n of available
numerical resources. The term resource refers to a piece of computational effort
which may be measured e.g. in terms of CPU time or number of calls to the
generative model. The amount n of available resources may not be known before
they are all used, so we wish to design anytime algorithms. Our goal is that the
proposed action A(n) be as close as possible to the optimal action in that state,
in the sense that the regret RA(n) (in the cumulative discounted sum of rewards
to come) of choosing this action instead of the optimal one should be small. Let
us now introduce some notations to define more precisely this notion of regret.

We consider here a deterministic controlled problem defined by the tuple
(X,A, f, r), where X is the state space, A the action space, f : X ×A→ X the
transition dynamics, and r : X × A → R the reward function. If at time t, the
system is in state xt ∈ X and the action at is chosen, then the system jumps to
the next state xt+1 = f(xt, at) and a reward r(xt, at) is received. In this paper
we will assume that all rewards are in the interval [0, 1]. We assume that the
state space is large (possibly infinite), and the action space is finite, with K
possible actions. We consider an infinite time horizon problem with discounted
rewards (0 ≤ γ < 1 is the discount factor). For any policy π : X → A we define
the value function V π : X → R associated to that policy:

V π(x) def=
∑
t≥0

γtr(xt, π(xt)),

where xt is the state of the system at time t when starting from x (i.e. x0 = x)
and following policy π.

154 J.-F. Hren and R. Munos

We also define the Q-value function Qπ : X × A → R associated to a policy
π, in state-action (x, a), as:

Qπ(x, a) def= r(x, a) + γV π(f(x, a)).

We have the property that V π(x) = Qπ(x, π(x)). Now the optimal value func-
tion (respectively Q-value function) is defined as: V ∗(x) def= supπ V

π(x) (respec-
tively Q∗(x, a) def= supπ Q

π(x, a)). From the dynamic programming principle, we
have the Bellman equations:

V ∗(x) = max
a∈A

[
r(x, a) + γV ∗(f(x, a))

]
Q∗(x, a) = r(x, a) + γmax

b∈A
Q∗(f(x, a), b).

Now, let us return to the action-selection algorithm A. After using n units
of numerical ressources the algorithm A returns the action A(n). The regret
resulting from choosing this action instead of the optimal one is:

RA(n) def= max
a∈A

Q∗(x, a)−Q∗(x,A(n)). (1)

From an action-selection algorithm A one may define a policy πA which would
select in each state encountered along a trajectory the action A(n) proposed by
the algorithm A using n resources. The following result motivates our choice of
the previous definition for the regret in the sense that an algorithm with small
regret will generate a close-to-optimal policy.

Proposition 1. Consider a control algorithm using an action-selection proce-
dure with regret ε (i.e. for each state x, the action-selection procedure returns an
action a such that Q∗(x, a) ≥ V ∗(x)− ε). Then the performance of the resulting
policy πA is ε

1−γ -optimal, i.e. for all x,

V ∗(x)− V πA(x) ≤ ε

1− γ
Proof. Let T and T π be operators over bounded functions on X , defined as
follows: for any bounded V : X → R, TV (x) def= maxa∈A

[
r(x, a) + γV (f(x, a))

]
,

T πV (x) def= r(x, π(x)) + γV (f(x, π(x))).
We have the properties that T and T π are contraction operators in sup norm,

and that V ∗ is the fixed point of T (i.e. V ∗ = TV ∗) and V π is the fixed point of
T π (i.e. V π = T πV π), see e.g. [Put94].

Using these notations, the assumption that A is an action selection procedure
with regret ε writes that for all x, T πAV ∗(x) ≥ TV ∗(x)−ε. Thus we have: ||V ∗−
V πA ||∞ ≤ ||TV ∗ − T πAV ∗||∞ + ||T πAV ∗ − T πAV πA ||∞ ≤ ε+ γ||V ∗ − V πA ||∞,
from which we deduce the proposition. �
Our goal is thus to define clever action-selection algorithms A such that, if
provided with n units of computational resource, would return an action with
minimal regret RA(n).

The next section describes a method based on the construction of a uniform
look-ahead tree.

Optimistic Planning of Deterministic Systems 155

3 Uniform Planning

3.1 Look-Ahead Tree Search

Given a state x, we describe a way to select an almost-optimal action, based
on the construction of a uniform look-ahead tree. We consider the (infinite) tree
T composed of all possible reachable states from x: the root corresponds to x
and each node of depth d correspond to a state that is reachable from x after
a sequence of d transitions. Each node i (associated to some state y), has K
children C(i) (associated with the states {f(y, a)}a∈A). Write 0 the root node,
and 1 . . .K its K children (nodes of depth 1).

We call a path of T a (finite or infinite) sequence of connected nodes starting
from the root. We define the value vi of a node i as the supremum, over all
infinite paths going through node i, of the sum of discounted rewards obtained
along such paths. We have the property that vi = maxj∈C(i) vj , and the optimal
value (value of the root) v∗ = v0 = maxi∈T vi = max{v1, . . . , vK}.

We consider numerical resources expressed in terms of the number of ex-
panded nodes. This is directly related to the CPU time required to explore the
corresponding part of the tree, or the amount of memory required to store infor-
mation about the expanded nodes. This is also equivalent to the number of calls
to the generative-model, providing the next-state f(x, a) and the reward r(x, a).

We say that a node is expanded when some numerical resources are allocated
to this node and to the computation of the transitions to its children (by a call
to the generative model for each actions). At any round n, the expanded tree
Tn denotes the set of nodes already expanded. The set of nodes in T that are
not in Tn but whose parents are in Tn is written Sn: this represents the set of
possible nodes that may be expanded at the next round (see fig. 1).

For any node i ∈ Sn, we define the value ui to be the sum of discounted
rewards obtained along the (finite) path from the root to node i (this information

Fig. 1. Set of expanded nodes Tn (black dots) at round n = 5 and set of nodes Sn

(gray dots) that may be expanded next. Here K = 2.

156 J.-F. Hren and R. Munos

is available at round n since the parent of i has been expanded and thus the
transition to node i has been computed). Now, for any node i ∈ Tn, we define in
a recursive way ui = maxj∈C(i) uj. Since these u-values are defined in Sn, they
are also well defined in Tn.

Note that since the u-values depend on Tn, we will write them ui(n) whenever
the dependency with respect to (w.r.t.) n is relevant. From their definition, we
have the property that ui(n) is an increasing function of n.

Since the sum of discounted rewards from a node of depth d is at most γd +
γd+1 + · · · = γd

1−γ (recall that all rewards are in [0, 1]), we have: for all i ∈ Tt∪St

and n ≥ t ≥ 1, ui(n) ≤ vi ≤ ui(n) + γd

1−γ .

3.2 The Algorithm

Here we consider a uniform exploration policy, defined as follows. We first expand
the root. Then, at each round n, we expand a node in Sn having the smallest
depth. See Algorithm 1.

Algorithm 1. Uniform planning algorithm AU

Set n = 0. Expand the root.
while Numerical resource available do

Expand a node i ∈ Sn with the smallest depth.
n = n + 1

end while
return A ction arg max

k∈{1,...,K}
uk(n)

Thus, at all rounds, a uniform tree is expanded: Hence, at round n = 1+K+
K2 + · · ·+Kd = Kd+1−1

K−1 , all nodes of depth d or less have been expanded.
The uniform action-selection algorithm, written AU , returns, after n rounds,

the action which corresponds to the children of the root k ∈ {1 . . .K} that has
the highest uk, i.e.:

AU (n) def= arg max
k∈{1,...,K}

uk(n),

(ties broken arbitrarily). In words, after n rounds, where we expanded the tree
uniformly, AU selects the action corresponding to the branch where we found
the (finite) path with highest sum of rewards.

3.3 Analysis

Theorem 1. Consider the uniform planning algorithm described above. Then
for any reward function, the regret of the uniform algorithm is bounded by

RAU (n) ≤ 1
γ(1− γ)

[
n(K − 1) + 1

]− log 1/γ
log K . (2)

Optimistic Planning of Deterministic Systems 157

Moreover, for all n ≥ 2, there exists a reward function, such that the regret of
this algorithm on this problem is at least

RAU (n) ≥ γ

1− γ
[
n(K − 1) + 1

]− log 1/γ
log K . (3)

We deduce the dependency (in a worst-case sense): RAU (n) = Θ(n−
log 1/γ
log K).

Proof. For any n ≥ 2, let d be the largest integer such that

n ≥ Kd+1 − 1
K − 1

. (4)

Thus all nodes of depth d have been expanded. Thus for all k ∈ {1, . . . ,K}, we
have vk ≤ uk + γd+1

1−γ , since all rewards up to depth d have been seen. Thus:

v∗ = max
k∈{1,...,K}

vk ≤ max
k∈{1,...,K}

uk +
γd+1

1− γ = uAU (n) +
γd+1

1− γ ≤ vAU (n) +
γd+1

1− γ .

Now, from (4), we have d ≥ logK [n(K − 1) + 1] − 2, from which we deduce
that

v∗ − vAU (n) ≤
γd+1

1− γ ≤
1

γ(1− γ)
[
n(K − 1) + 1

]− logK 1/γ
.

For the second part of the Theorem, consider a fixed n. Define d as the largest
integer such that (4) holds. Thus, from (4), we have d ≤ logK [n(K − 1)+ 1]− 1.
Define the following reward function: all rewards are 0 except in a branch (say
branch 1) where the rewards of all transitions from nodes of depth p to depth
p+ 1, where p > d+ 1, is 1. Thus v∗ = v1 = γd+2

1−γ and v2 = 0.
Thus at the time of the decision, all uk (for k ∈ {1, . . . ,K}) equal zero (only

0 rewards have been observed), and an arbitrary action (say action 2) is selected
by the algorithm.

Thus v∗ − vAU (n) = v1 − v2 = γd+2

1−γ , and (3) follows from the bound on d. �

As a consequence of Theorem 1 and Proposition 1, we deduce that in order
to guarantee that the performance of the uniform planning policy πA(n) is ε-

optimal (i.e. ||V ∗ − V πA(n) ||∞ ≤ ε), we need to devote n = Θ
(1

ε(1−γ)2
) log K

log 1/γ

units of resource per decision-step.
In this paper, we sought for other action-selection algorithms A that could

make better use of available resources in the sense of minimizing the regret
RA(n) for a fixed amount n of computational resources. Note that the worst-
case analysis considered in the second part of the proof of the previous Theorem
may discourage us for searching for better bounds, since a similar analysis could
be pursued on any specific algorithm. However we would like to define relevant
classes of problems for which one would expect to obtain better convergence
rates (for the regret) when using other action-selection algorithms than uniform:
One cannot hope to achieve better rates for all problems but this may be possible
for specific classes of problems.

158 J.-F. Hren and R. Munos

4 Optimistic Planning

In this section, we present an algorithm building an asymmetric look-ahead tree
aiming at exploring first the most promising parts of the tree.

4.1 The Algorithm

We define the b-value of each node i ∈ Sn of depth d by bi
def= ui + γd

1−γ , and for

any node i ∈ Tn, its b-value is defined recursively by: bi
def= maxj∈C(i) bj .

Note that like the u-values, the b-values are also well-defined and also depend
on n, so we will write them bi(n) whenever the explicit dependency w.r.t. n is
relevant. A property is that bi(n) is a decreasing function of n. Now, since all
rewards are assumed to be in [0, 1], we have the immediate property that these
b-values are upper-bounds on the values of the nodes: for all i ∈ Tt ∪ St, for all
n ≥ t,

ui(n) ≤ vi ≤ bi(n).

The optimistic exploration policy consists in expanding in each round a node
i ∈ Sn which possesses the highest b-value. See Algorithm 2. The returned
action corresponds to the child of the root with highest u-value: AO(n) def=
argmaxk∈{1,...,K} uk(n) (ties broken arbitrarily).

Algorithm 2. Optimistic planning algorithm AO

Set n = 0. Expand the root.
while Numerical resource available do

Expand a node i ∈ Sn s.t. ∀j ∈ Sn, bi(n) ≥ bj(n).
n = n + 1

end while
return A ction arg max

k∈{1,...,K}
uk(n)

4.2 Analysis

Theorem 2. Consider the optimistic planning algorithm described above. At
round n, the regret is bounded by

RAO(n) ≤ γdn

1− γ , (5)

where dn is the depth of the expanded tree Tn (maximal depth of nodes in Tn).

As a consequence, for any reward function, the upper bound on the regret for
the optimistic planning is never larger than that of the uniform planning (since
the uniform exploration is the exploration strategy which minimizes the depth
dn for a given n, the depth obtained when using an optimistic algorithm is at
least as high as that of the uniform one).

Optimistic Planning of Deterministic Systems 159

Proof. First let us notice that the action returned by the optimistic algorithm
corresponds to a deepest explored branch. Indeed, if this was not the case, this
would mean that if we write i ∈ Tn a node of maximal depth dn, there exists a
node j ∈ Tn of depth d < dn such that uj(n) ≥ ui(n). Thus there would exist a
round t ≤ n such that node i has been expanded at round t, which would mean
that bi(t) ≥ bj(t). But this is impossible since bi(t) = ui(t)+ γdn

1−γ ≤ ui(n)+ γdn

1−γ ≤
uj(n) + γdn

1−γ < uj(n) + γd

1−γ = bj(n) ≤ bj(t).
Thus the action returned by the algorithm corresponds to a branch that has

been the most deeply explored. Let i ∈ Tn be a node of maximal depth dn. Node
i belongs to one of the K branches connected to the root, say branch 1. If the
optimal action is 1 then the loss is 0 and the upper bound holds. Otherwise, the
optimal action is not 1, say it is 2. Let t ≤ n be the round at which the node i
was expanded. This means that bi(t) ≥ bj(t) for all nodes j ∈ St, thus also for
all nodes j ∈ Tt. In particular, b1(t) = bi(t) ≥ b2(t). But b2(t) ≥ b2(n). Now, the
u-values are always lower bounds on the v-values, thus u1(t) ≤ v1, and from the
definition of u-values, ui(t) ≤ u1(t). We thus have:

v∗ − vAO(n) = v2 − v1 ≤ b2(n)− v1 ≤ b2(t)− v1

≤ b1(t)− u1(t) ≤ bi(t)− ui(t) =
γdn

1− γ ,

which concludes the proof. �

Remark 1. This result shows that the upper bound for optimistic planning can-
not be worst than the upper bound for uniform planning. This does not mean
that for any problem, the optimistic algorithm will perform at least as well as
a uniform algorithm. Indeed, this is not true since, if we consider the example
mentioned in the proof of Theorem 1, if at time n all observed rewards are 0, any
algorithm (such as the optimistic one) would deliver an arbitrary decision, which
may be worst than another arbitrary decision (made for example by the uniform
algorithm). However, if we consider equivalent classes of problems, where classes
are defined by trees having the same reward function up to possible permutations
of branches, then we conjecture that we have the stronger result that for any
problem, the optimistic planning is never worse than the uniform planning per-
formed on a problem of the same class. However we will not pursue this research
further in this paper.

Note that the lower bound obtained for the uniform planning also holds for the
optimistic planning (the proof is the same: since, up to round n all rewards are
0, the optimistic planning will also build a uniform tree). This shows that no
improvement (over uniform planning) may be expected in a worst-case setting,
as already mentioned. In order to quantify possible improvement over uniform
planning, one thus needs to define specific classes of problems.

For any ε ∈ [0, 1], define the proportion pd(ε) of ε-optimal nodes of depth d:

pd(ε)
def= |{node i of depth d s.t. vi ≥ v∗ − ε}|K−d,

160 J.-F. Hren and R. Munos

and write p(ε) def= limd→∞ pd(ε) the proportion of ε-optimal paths in the tree
(note that this limit is well defined since pd(ε) is a decreasing function of d).

Theorem 3. Let β ∈ [0, log K
log 1/γ] be such that the proportion of ε-optimal nodes

of depth d ≥ d0 (for some depth d0) in the tree T is O(εβ). More precisely, we
assume that there exists positive constants d0 and c, such that ∀d ≥ d0 ∀ε ≥ 0,
pd(ε) ≤ cεβ. Now let us define κ def= Kγβ, which belongs to the interval [1,K].

If β < log K
log 1/γ (i.e. κ > 1), then the regret of the optimistic algorithm is

RAO(n) = O
(
n−

log 1/γ
log κ

)
.

If β = log K
log 1/γ (i.e. κ = 1), then we have the exponential rate:

RAO (n) = O
(
γ

(1−γ)β

c n
)
.

Proof. Let us define the sub-tree T∞ ⊂ T of all the nodes i of depth d that are
γd

1−γ -optimal, i.e.

T∞ def=
⋃
d≥0

{
node i of depth d s.t. vi +

γd

1− γ ≥ v∗
}
.

Let us prove that all nodes expanded by the optimistic algorithm are in T∞.
Indeed, let i be a node of depth d expanded at round n. Then bi(n) ≥ bj for all
j ∈ Sn ∪ Tn, thus bi(n) = b0(n) (b-value of the root). But b0(n) ≥ v0 = v∗, thus
vi ≥ ui(n) = bi(n)− γd

1−γ ≥ v∗ − γd

1−γ , thus i ∈ T∞.
Now, from the definition of β, there exists d0 such that the proportion of

ε-optimal nodes of depth d > d0 is at most cεβ, where c is a constant. We thus
have that the number nd of nodes of depth d in T∞ is bounded by c

(
γd

1−γ

)β
Kd.

Now, write dn the depth of the expanded tree Tn at round n. Let n0 = Kd0+1−1
K−1

the number of nodes in T of depth less than d0. We have:

n ≤ n0 +
dn∑

d=d0+1

nd ≤ n0 + c

dn∑
d=d0+1

(γd

1− γ
)β
Kd = n0 + c′

dn∑
d=d0+1

κd

with c′ = c/(1− γ)β and κ = γβK.
First, if κ > 1 then we have n ≤ n0 + c′κd0+1 κdn−d0−1

κ−1 . Thus dn ≥ d0 +

logK
(n−n0)(κ−1)

c′κd0+1 . Now, from Theorem 2, we have the regret:

RAO (n) ≤ γdn

1− γ =
1

1− γ

[
(n− n0)(κ− 1)

c′κd0+1

] log γ
log κ

= O
(
n−

log 1/γ
log κ

)
.

Now, if κ = 1, let n0 = Kd0+1−1
K−1 . Following the same arguments as above,

we deduce that n ≤ n0 + c
(1−γ)β (dn − d0), and the regret: RAO (n) ≤ γdn

1−γ =

O
(
γn (1−γ)β

c

)
. �

Optimistic Planning of Deterministic Systems 161

Remark 2. Let us notice that the proportion of ε-optimal paths is bounded by
cεβ. β lies necessarily in the interval [0, log1/γ K], and two extreme cases are:

– The case when all paths are optimal (i.e. all rewards are equal). This corre-
sponds to β = 0, or κ = K.

– The case where there is only one path where rewards are 1, all other rewards
being 0. Then, for any ε, the proportion of ε-optimal nodes of depth d is
1/Kd for d ≤ d0 for some depth d0 for which γd0

1−γ ≤ ε, and for all d > d0 the
proportion of ε-optimal nodes remains constant. Since d0 ≥ logγ(1−γ)ε, the

proportion of ε-optimal nodes of depth d > d0 is at most
[
(1 − γ)ε

]log1/γ K ,
i.e. which corresponds to β = log1/γ K. This is the highest possible value for
β. This corresponds to κ = 1.

From this result, we see that when κ > 1, the decrease rate of the regret for the
optimistic algorithm is n−

log 1/γ
log κ instead of the n−

log 1/γ
log K for the uniform one. By

looking at the proof, we observe that κ plays the role of the branching factor
of the tree T∞ of the expandable nodes, similarly to K being the branching
factor of the full tree T . κ belongs to the interval [1,K], thus the decrease rate
for the regret of the optimistic planning is always at least as good as that of
the uniform one. The bound for the optimistic planning is better than uniform
whenever κ < K, and greatly better when κ is close to 1. Note that the tree
T∞ represents the set of nodes i such that given the observed rewards from the
root to node i, one cannot decide whether i lies in an optimal path or not. This
represents the set of nodes which would have to be expanded for finding an
optimal path. Thus the performance of the optimistic algorithm is expressed in
terms of the branching factor of the subtree T∞ composed of all the nodes that
have to be expanded eventually. We believe this is a strong optimality result,
although we do not have lower bounds expressed in terms of β, yet.

Remark 3. The case κ = 1 is also interesting because it provides rates that are
exponential in n instead of polynomial ones. This case would hold for example
if there exists d0 such that for each node id of depth d ≥ d0 along an optimal
path, if we write xd the state corresponding to that node id, we require that the
gap between the optimal value function at xd and the Q-value of all suboptimal
actions are larger than some constant value ∆ > 0, i.e., ∃∆ > 0, for all d ≥ d0,

V ∗(xd)− max
a s.t. Q∗(xd,a)<V ∗(xd)

Q∗(xd, a) ≥ ∆. (6)

Indeed, if this was true, we would have for all d ≥ d0, for any non-optimal
child j of id, vj ≤ v∗ −∆γd (since vid

= v∗ because the nodes id are optimal).
Now, the number of nodes in the branch j that belong to the expandable tree T∞
is bounded by Kh−d−1 where h is the maximal depth such that vj + γh

1−γ ≥ v∗,

i.e., γh−d ≥ ∆(1−γ). Thus Kh−d−1 = 1
K

[
(1−γ)∆

]−β
with β = logK/ log(1/γ).

Thus the number of nodes of depth d ≥ d0 in T∞ is bounded by a constant
independent of d, i.e. 1

K [∆(1−γ)]−β. Thus pd(γd

1−γ) ≤ 1
K

[
∆(1−γ)

]−β
/Kd. Thus

162 J.-F. Hren and R. Munos

pn(ε) ≤ 1
K

[
ε/∆]β. Thus p(ε) ≤ 1

K

[
ε/∆]β and we have κ = 1 and the constant

c = 1
K (1/∆)β.

Remark 4. A natural extension of the previous case (for which we deduced
κ = 1) is when from each state xd corresponding to a node of depth d ≥ d0, for
some d0, there exist a small numberm of ∆-optimal sequences of h actions, where
∆ > 0 is a fixed constant and h a fixed integer. This means that from xd there
exist at most m sequences of actions a1, . . . , ah, leading to states (xd+i)1≤i≤h,
such that

h−1∑
i=0

γir(xd+i, ai+1) + γhV ∗(xd+h) ≥ V ∗(xd)−∆.

Then one can prove that the branching factor κ of the expandable tree is
at most m1/h. Notice that in the case presented in the previous remark we had
m = 1 and h = 1 (and we deduced that κ = 1). However note that in the previous
remark, we only assumed the property (6) along the optimal path (whereas we
impose here that it holds for all nodes). The proof of this result is rather technical
and not included here.

5 Numerical Experiments

We have done some numerical experiments to compare uniform and optimistic
planning algorithms. We consider the system ÿt = at, where a point defined by
its position yt and its velocity vt is controlled by a force (action) at ∈ {−1, 1}.
The dynamics are: (yt+1, vt+1)′ = (yt, vt)′ + (vt, at)′∆t, where ∆t = 0.1 is the
time discretization step. The reward of state (yt, vt) action at is defined by
max(1 − y2

t+1, 0) where yt+1 is the position of the resulting next state.
In figure 2 we show the trees resulting from the uniform and optimistic al-

gorithms using the same number of numerical resources n = 3000. The initial
state is (y0 = −1, v0 = 0) and the discount factor γ = 0.9. The optimistic tree
is not deeply explored on the left side of the initial state since this corresponds
to states with low rewards, however it is more deeply expanded along some
branches which provide high rewards, and in particular, the branch leading the
states around the origin is very deeply (and sharply) expanded (maximal depth
of 49).

We computed an average regret of both algorithms for n = 2d+1− 1 with d ∈
{2, . . . , 18} (full trees of depth d), where the average is performed over 1000 trees
where the initial state have been uniformly randomly sampled in the domain
[−1, 1] × [−2, 2]. Figure 3 shows the regret (in log scales) for both algorithms.
The slope log R(n)

log n of these curves indicate the exponent in the regret polynomial
dependency. For the uniform curve, we calculate a numerical slope of about −1,
thus the regret RAU (n) � 1/n. For the optimistic curve, the numerical slope is
about −3 = − log 1/γ

κ which corresponds to the branching factor κ = 1.04. The
regret of optimistic planning is thus of order 1/n3 which is significantly a better
rate than the uniform one, and explains the great improvement of the optimistic

Optimistic Planning of Deterministic Systems 163

Fig. 2. Expanded trees with n = 3000 calls to the generative model using the uniform
(left figure) and optimistic (right) planning algorithms. The depth of the trees is 11 for
the uniform and 49 for the optimistic.

Fig. 3. Average regret R(n) for both algorithms as a function of n = 2d+1 − 1 with
d ∈ {2, . . . , 18}, in logarithmic scales. The slope of each curve indicates the exponent
in the actual polynomial dependency of the regret.

164 J.-F. Hren and R. Munos

planning over the uniform approach. For illustration, achieving a regret of 0.0001
with uniform planning requires more than n = 262142 expanded nodes whereas
optimistic planning only requires n = 4094 such nodes.

We do not have space to describe more challenging applications here but other
simulations, including the double inverted pendulum linked by a spring, are de-
scribed at the address: http://sequel.futurs.inria.fr/hren/optimistic/.

6 Conclusions and Future Works

An immediate remaining work is the derivation of β-dependant lower bounds
for the optimistic planning. An extension of this work would consider the case
of stochastic rewards, like in [CM07], where an additional term (coming from a
Chernoff-Hoeffing bound) would be added to the b-values to define high prob-
ability upper-confidence bounds. Another, more challenging, extension would
consider the stochastic transitions case. The possibility of combining this pure
search approach with local approximation of the optimal value function is cer-
tainly worth investigating too.

References

[ACBF02] Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the mul-
tiarmed bandit problem. Machine Learning Journal 47(2-3), 235–256
(2002)

[BT96] Bertsekas, D.P., Tsitsiklis, J.: Neuro-Dynamic Programming. Athena Sci-
entific (1996)

[CM07] Coquelin, P.-A., Munos, R.: Bandit algorithms for tree search. In: Uncer-
tainty in Artificial Intelligence (2007)

[GWMT06] Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modification of UCT with
patterns in Monte-Carlo go. Technical Report INRIA RR-6062 (2006)

[KMN02] Kearns, M., Mansour, Y., Ng, A.Y.: A sparse sampling algorithm for
near-optimal planning in large Markovian decision processes. Machine
Learning 49, 193–208 (2002)

[KS06] Kocsis, L., Szepesvari, C.: Bandit based monte-carlo planning. In: Euro-
pean Conference on Machine Learning, pp. 282–293 (2006)

[LR85] Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules.
Advances in Applied Mathematics 6, 4–22 (1985)

[PG04] Péret, L., Garcia, F.: On-line search for solving large Markov decision
processes. In: Proceedings of the 16th European Conference on Artificial
Intelligence (2004)

[Put94] Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley and Sons, Chichester (1994)

[Rob52] Robbins, H.: Some aspects of the sequential design of experiments. Bul-
letin of the American Mathematics Society 58, 527–535 (1952)

[SB98] Sutton, R., Barto, A.: Reinforcement Learning. MIT Press, Cambridge
(1998)

Policy Iteration for Learning an Exercise Policy
for American Options

Yuxi Li and Dale Schuurmans

Department of Computing Science
University of Alberta

{yuxi,dale}@cs.ualberta.ca

Abstract. Options are important financial instruments, whose prices
are usually determined by computational methods. Computational fi-
nance is a compelling application area for reinforcement learning re-
search, where hard sequential decision making problems abound and have
great practical significance. In this paper, we investigate reinforcement
learning methods, in particular, least squares policy iteration (LSPI),
for the problem of learning an exercise policy for American options. We
also investigate a method by Tsitsiklis and Van Roy, referred to as FQI.
We compare LSPI and FQI with LSM, the standard least squares Monte
Carlo method from the finance community. We evaluate their perfor-
mance on both real and synthetic data. The results show that the exer-
cise policies discovered by LSPI and FQI gain larger payoffs than those
discovered by LSM, on both real and synthetic data. Our work shows
that solution methods developed in reinforcement learning can advance
the state of the art in an important and challenging application area,
and demonstrates furthermore that computational finance remains an
under-explored area for deployment of reinforcement learning methods.

1 Introduction

Options are an essential financial instrument for hedging and risk management,
and therefore, options pricing and finding optimal exercise policies are important
problems in finance.1 Options pricing is usually approached by computational
methods. In general, computational finance is a compelling application area for
reinforcement learning research, where hard sequential decision making problems
abound and have great practical significance [11]. In this paper, we show solution
techniques from the reinforcement learning literature are superior to a standard
technique from the finance literature for pricing American options, a classical
sequential decision making problem in finance.

Options pricing is an optimal control problem, usually modeled as Markov
Decision Processes (MDP). Dynamic programming is a method of finding an
1 A call/put option gives the holder the right, not the obligation, to buy/sell the

underlying asset, for example, a share of a stock, by a certain date (maturity date)
for a certain price (strike price). An American option can be exercised any time up
to the maturity date.

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 165–178, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

166 Y. Li and D. Schuurmans

optimal policy for an MDP [2, 12], usually with the model of the MDP. Rein-
forcement learning, also known as neuro-dynamic programming, can work with-
out a model of the MDP [3, 13]. When the size of an MDP is large, for example,
when the state space is continuous, we encounter the “curse of dimensional-
ity”. Successful investigations include the application of reinforcement learning
to playing backgammon, dynamic channel allocation, elevator dispatching, and
so on. The key idea behind these successes is to exploit effective approximation
methods. Linear approximation has been most widely used. A reinforcement
learning method can learn an optimal policy for an MDP either from simulated
samples or directly from real data. One advantage of basing directly an approx-
imation architecture on the underlying MDP is that the error for the simulation
model is eliminated.

In the community of computational finance, researchers have investigated pric-
ing methods using analytic models and numerical methods, including the risk-
neutral approach, the lattice and finite difference methods, and the Monte Carlo
methods. For example, Hull [8] provides an introduction to options and other
financial derivatives and their pricing methods, Broadie and Detemple [5] survey
option pricing methods, and Glasserman [7] provides a book length treatment
for Monte Carlo methods. Most of these methods follow the backward-recursive
approach of dynamic programming. Two examples that deploy approximate dy-
namic programming for the problem of pricing American options are: the least
squares Monte Carlo (LSM) method in [10] and the approximate value iteration
approach in [14].

Our goal is to investigate reinforcement learning type algorithms for pric-
ing American options. In this work, we extend an approximate policy iteration
method, namely, least squares policy iteration (LSPI) in [9], to the problem of
pricing American options. We also investigate the method proposed in [14], re-
ferred to as FQI. We empirically evaluate the performance of LSPI, FQI and
LSM, with respect to the payoffs the exercise policies gain. In contrast, previ-
ous work evaluates pricing methods by measuring the accuracy of the estimated
prices. The results show that, on both real and synthetic data, exercise poli-
cies discovered by LSPI and FQI can achieve larger payoffs than those found by
LSM.

In this work, we present a successful application of reinforcement learning re-
search, the policy iteration method, for learning an exercise policy for American
options, and show its superiority to LSM, the standard option pricing method
in finance. As well, we introduce a new performance measure, the payoff a
pricing method gains, for comparing option pricing methods in the empirical
study.

The remainder of this paper is organized as follows. First, we introduce MDPs
and LSPI. Then, we present the extension of LSPI to pricing American op-
tions, and introduce FQI and LSM. After that, we study empirically the per-
formance of LSPI, FQI and LSM on both real and synthetic data. Finally, we
conclude.

Policy Iteration for Learning an Exercise Policy for American Options 167

2 Markov Decision Processes

The problem of sequential decision making is common in economics, science and
engineering. Many of these problems can be modeled as MDPs. An MDP is
defined by the 5-tuple (S,A, P,R, γ). S is a set of states; A is a set of actions;
P is a transition model, with P (s, a, s′) specifying the conditional probability of
transitioning to state s′ starting from state s and taking action a; R is a reward
function, with R(s, a, s′) being the reward for transition to state s′ starting from
state s and taking action a; and γ is a discount factor.

A policy π is a rule for selecting actions based on observed states. π(s, a)
specifies the probability of selecting action a in state s by following policy π.
An optimal policy maximizes the rewards obtained over the long run. We de-
fine the long run reward in an MDP as maximizing the infinite horizon dis-
counted reward

∑∞
t=0 γ

trt obtained over an infinite run of the MDP, given
a discount factor 0 < γ < 1. A policy π is associated with a value func-
tion for each state-action pair (s, a), Qπ(s, a), which represents the expected,
discounted, total reward starting from state s taking action a and following
policy π thereafter. That is, Qπ(s, a) = E(

∑∞
t=0 γ

trt|s0 = s, a0 = a), where
the expectation is taken with respect to policy π and the transition model
P . Qπ can be found by solving the following linear system of Bellman equa-
tions: Qπ(s, a) = R(s, a) + γ

∑
s′∈S P (s, a, s′)

∑
a′∈A π(s′, a′)Qπ(s′, a′), where

R(s, a) =
∑

s′ P (s, a, s′)R(s, a, s′) is the expected reward for state-action pair
(s, a). Qπ is the fixed point of the Bellman operator Tπ: (TπQ)(s, a) = R(s, a)+
γ
∑

s′∈S P (s, a, s′)
∑

a′∈A π(s′, a′)Q(s′, a′). Tπ is a monotonic operator and a
contraction mapping in the L∞-norm. The implication is that successive ap-
plication of Tπ for any initial Q converges to Qπ. This is value iteration, a
principled method for computing Qπ.

When the size of an MDP becomes large, its solution methods encounter
the “curse of dimensionality”. Approximation architecture is an approach to
addressing the scalability concern. The linear architecture is an efficient and
effective approach. In the linear architecture, the approximate value function is
represented by: Q̂π(s, a;w) =

∑k
i=1 φi(s, a)wi, where φi(·, ·) is a basis function,

wi is its weight, and k is the number of basis functions.2 Define

φ(s, a) =

⎛⎜⎜⎝
φ1(s, a)
φ2(s, a)
. . .

φk(s, a)

⎞⎟⎟⎠ , Φ =

⎛⎜⎜⎜⎜⎝
φ(s1, a1)T

. . .
φ(s, a)T

. . .
φ(s|S|, a|A|)T

⎞⎟⎟⎟⎟⎠ , wπ =

⎛⎜⎜⎝
wπ

1
wπ

2
. . .
wπ

k

⎞⎟⎟⎠ ,

where T denotes matrix transpose. Q̂π then can be represented as Q̂π = Φwπ .

Least squares policy iteration. Policy iteration is a method of discovering
an optimal solution for an MDP. LSPI [9] combines the data efficiency of the

2 Following the conventional notation, an approximate representation is denoted with
theˆsymbol, and a learned estimate is denoted with the˜symbol.

168 Y. Li and D. Schuurmans

least squares temporal difference method [4] and the policy search efficiency of
policy iteration. Next, we give a brief introduction of LSPI.3 The matrix form
of the Bellman equation is: Qπ = R + γPΠπQ

π, where P is a |S||A| × |A|
matrix, with P((s, a), s′) = P (s, a, s′), and Π is a |S| × |S||A| matrix, with
Π(s′, (s′, a′)) = π(s′, a′).

The state-action value function Qπ is the fixed point of the Bellman opera-
tor: TπQ

π = Qπ. An approach to finding a good approximation is to force Q̂π

to be a fixed point of the Bellman operator: TπQ̂
π ≈ Q̂π. Q̂π is in the space

spanned by the basis functions. However, TπQ̂
π may not be in this space. LSPI

requires that, Q̂π = Φ(ΦTΦ)−1ΦT(TπQ̂
π) = Φ(ΦTΦ)−1ΦT(R + γPΠπQ

π),
where, Φ(ΦTΦ)−1ΦT is the orthogonal projection which minimizes the L2-norm.
From this, we can obtain, wπ =

(
ΦT(Φ− γPΠπΦ)

)−1
ΦTR. The weighted least

squares fixed point solution is: wπ =
(
ΦT∆µ(Φ− γPΠπΦ)

)−1
ΦT∆µR, where

∆µ is the diagonal matrix with the entries of µ(s, a), which is a probability dis-
tribution over state-action pairs (S×A). This can be written as Awπ = b, where
A = ΦT∆µ(Φ− γPΠπΦ) and b = ΦT∆µR.

Without a model of the MDP, that is, without the full knowledge of P, Ππ

and R, we need a learning method to discover an optimal policy. It is shown
in [9] that A and b can be learned incrementally as, at iteration t+ 1:

Ã(t+1) = Ã(t) + φ(st, at)(φ(st, at)− γφ(s′t, a
′
t))

T

b̃(t+1) = b̃(t) + φ(st, at)Rt

3 Learning an Exercise Policy for American Options

We first discuss the application of LSPI for the problem of learning an exercise
policy for American options. Next we give a brief review of FQI [14] and LSM [10].
We discretize the time, thus the options become Bermudan. When each time step
is very small, the results are close to those for American options.

3.1 LSPI for Learning an Exercise Policy for American Options

We need to consider several peculiarities of the problem of learning an exercise
policy for American options, when applying LSPI for it. First, it is an episodic,
optimal stopping problem. It may terminate any time between the starting date
and the maturity date of the option. Usually, after a termination decision is
made, LSPI needs to start over from a new sample path. This is data inefficient.
We use the whole sample path, even in the case the option is exercised at an
intermediate time step following the current policy. Second, in option pricing,
the continuation value of an option may be different at different times, even
with the same underlying asset price and other factors. Thus we incorporate
time as a component in the state space. Third, there are two actions for each

3 This is the LPSI with least-squares fixed-point approximation. LSPI can also work
with Bellman residual minimizing approximation, which we do not discuss here.

Policy Iteration for Learning an Exercise Policy for American Options 169

state, exercise and continue. The state-action value function of exercising the
option, that is, the intrinsic value of the option, can be calculated exactly. We
only need to consider the state-action value function for continuation, that is,
Q(s, a = continue). Fourth, before exercising an option, there is no reward to
the option holder, that is, R = 0. When the option is exercised, the reward is
the payoff.

3.2 FQI: The Policy Iteration Approach in [14]

We introduce FQI [14] in the following. We use Q(S, t) to denote Q({S, t}, a =
continue), where S is the stock price. We want to find a projection Π of
Q = (Q(S, 0), Q(S, 1), . . . , Q(S, T − 1)) in the form Φw, where w is to minimize∑T−1

t=0 E[(Φ(St, t)w−Q(St, t))2], where the expectation E[(Φ(St, t)w−Q(St, t))2]
is with respect to the probability measure of St. The weight w is given by

w =

(
T−1∑
t=0

E[Φ(St, t)ΦT(St, t)]

)−1

E[Φ(St, t)Q(St, t)] (1)

Define g(S) as the intrinsic value of the option when the stock price is S,
and Jt(S) as the price of the option at time t when St = S: JT = g and
Jt = max(g, γPJt+1), t = T − 1, T − 2, . . . , 0, where (PJ)(S) = E[J(St+1)|St =
S]. Define FJ = γPmax(g, J). We have (Q(·, 0), Q(·, 1), . . . , Q(·, T − 1)) =
(FQ(·, 1), FQ(·, 2), . . . , FQ(·, T)), which is denoted compactly as Q = HQ. The
above solution of w would thus be the fixed point of the equation HQ∗ = Q∗.
However, it is difficult to solve this function, since Q∗ is unknown. We resort to
the fixed point of equationQ = ΠHQ. Suppose wi is the weight vector computed
at iteration i (w0 can be arbitrarily initialized),

wi+1 =

(
T−1∑
t=0

E[Φ(St, t)ΦT(St, t)]

)−1

E[Φ(St, t)max(g(St+1),Φ(Sj
t+1, t)wi)]

(2)
The expectation with respect to the underlying probability measure can be

replaced with an expectation with respect to the empirical measure provided
by unbiased samples. The following is an implementable version with sample
trajectories Sj

t , j = 1, . . . ,m, where Sj
t is the value of St in the j-th trajectory:

ŵi+1 =

T−1X
t=0

mX
j=1

Φ(Sj
t , t)ΦT(Sj

t , t)

!−1 T−1X
t=0

mX
j=1

Φ(Sj
t , t)max(g(Sj

t+1),Φ(Sj
t+1, t)ŵi)

(3)

3.3 Least Squares Monte Carlo

LSM in [10] follows the backward-recursive dynamic programming approach with
function approximation of expected continuation value. It estimates the expected
continuation value from the second-to-last time step backward until the first time

170 Y. Li and D. Schuurmans

step, on the sample paths. At each time step, LSM fits the expected continuation
value on the set of basis functions with least squares regression, using the cross-
sectional information from the sample paths and the previous iterations (or the
last time step). Specifically, at time step t, assuming the option is not exercised,
the continuation values for the sample paths (LSM uses only in-the-money paths)
can be computed, since in a backward-recursive approach, LSM has already
considered time steps after t until the maturity. As well, values of the basis
functions can be evaluated for the asset prices at time step t. Then, LSM regresses
the continuation values on the values of the basis functions with least squares, to
obtain the weights for the basis functions for time step t. When LSM reaches the
first time step, it obtains the price of the option. LSM also obtains the weights
for the basis functions for each time step. These weights represent implicitly the
exercising policy. The approximate value iteration method in [14] is conceptually
similar to LSM. (FQI is also proposed in [14].)

4 Empirical Study

We study empirically the performance of LSPI, FQI and LSM on learning an
exercise policy for American options. We study the plain vanilla American put
stock options and American Asian options. We focus on at-the-money options,
that is, the strike price is equal to the initial stock price. For simplicity, we as-
sume the risk-free interest rate r is constant and stocks are non-dividend-paying.
We assume 252 trading days in each year. We study options with quarterly,
semi-annual and annual maturity terms, with 63, 126 and 252 days duration
respectively. Each time step is one trading day, that is, 1/252 trading year. In
LSPI, we set the discount factor γ = e−r/252, corresponding to the daily interest
rate. LSPI and FQI iterate on the sample paths until the difference between two
successive policies is sufficiently small, or when it has run 15 iterations (LSPI
and FQI usually converge in 4 or 5 iterations). We obtain five years’ daily stock
prices from January 2002 to December 2006 for Dow Jones 30 companies from
WRDS, Wharton Research Data Services. We study the payoff a policy gains,
which is the intrinsic value of an option when the option is exercised.

4.1 Simulation Models

In our experiments when a simulation model is used, synthetic data may be gen-
erated from either the geometric Brownian Motion (GBM) model or a stochastic
volatility (SV) model, two of the most widely used models for stock price move-
ment. See [8] for detail.

Geometric Brownian motion model. Suppose St, the stock price at time t,
follows a GBM:

dSt = µStdt+ σStdWt, (4)

where, µ is the risk-neutral expected stock return, σ is the stock volatility and
W is a standard Brownian motion. For a non-dividend-paying stock, µ = r, the

Policy Iteration for Learning an Exercise Policy for American Options 171

risk-free interest rate. It is usually more accurate to simulate lnSt in practice.
Using Itô’s lemma, the process followed by lnSt is:

dlnSt = (µ− σ2/2)dt+ σdWt. (5)

We can obtain the following discretized version for (5), and use it to generate
stock price sample paths:

St+1 = Stexp{(µ− σ2/2)∆t+ σ
√
∆tε}, (6)

where∆t is a small time step, and ε ∼ N(0, 1), the standard normal distribution.
To estimate the constant σ from real data, we use the method of maximum

likelihood estimation (MLE).

Stochastic volatility model. In the GBM, the volatility is assumed to be a
constant. In reality, the volatility may itself be stochastic. We use GARCH(1,1)
as a stochastic volatility model:

σ2
t = ω + αu2

t−1 + βσ2
t−1, (7)

where ut = ln(St/St−1), and α and β are weights for u2
t−1 and σ2

t−1 respectively.
It is required that α + β < 1 for the stability of GARCH(1,1). The constant
ω is related to the long term average volatility σL by ω = (1 − α − β)σL. The
discretized version is:

St+1 = Stexp{(µ− σ2
t /2)∆t+ σt

√
∆tε}. (8)

To estimate the parameters for the SV model in (7) and to generate sample
paths, we use the MATLAB GARCH toolbox functions ’garchfit’ and ’garchsim’.

4.2 Basis Functions

LSPI, FQI and LSM need to choose basis functions to approximate the ex-
pected continuation value. As suggested in [10],we use the constant φ0(S) =
1 and the following Laguerre polynomials to generalize over the stock price:
φ1(S) = exp(−S′/2), φ2(S) = exp(−S′/2)(1−S′), and φ3(S) = exp(−S′/2)(1−
2S′ + S′2/2). We use S′ = S/K instead of S in the basis functions, where
K is the strike price, since the function exp(−S/2) goes to zero fast. LSPI
and FQI also generalize over time t. We use the following functions for time
t: φt

0(t) = sin(−tπ/2T + π/2), φt
1(t) = ln(T − t), φt

2(t) = (t/T)2, guided by the
observation that the optimal exercise boundary for an American put option is a
monotonic increasing function, as shown in [6].

American stock put options. The intrinsic value of an American stock put
options is g(S) = max(0,K − S). LSM uses the functions φ0(S), φ1(S), φ2(S),
and φ3(S). LSM computes different sets of weight vectors for the basis functions
for different time steps. LSPI and FQI use the functions: φ0(S, t) = φ0(S),
φ1(S, t) = φ1(S), φ2(S, t) = φ2(S), φ3(S, t) = φ3(S), φ4(S, t) = φt

0(t), φ5(S, t) =

172 Y. Li and D. Schuurmans

φt
1(t), and φ6(S, t) = φt

2(t). LSPI (FQI) determines a single weight vector over
all time steps to calculate the continuation value.

American Asian call options. Asian options are exotic, path-dependent op-
tions. We consider a call option whose payoff is determined by the average
price Avg of a stock over some time horizon, and the option can be exer-
cised at any time after some initial lockout time period. The intrinsic value
is g(Avg) = max(0, Avg−K). The choice of the eight basis functions for a stock
price and the average of stock price follows the suggestion in [10]: a constant, the
first two Laguerre polynomials for the stock price, the first two Laguerre poly-
nomials for the average stock price, and the cross products of these Laguerre
polynomials up to third order terms. LSPI and FQI take time as a component
in the state space. We use the same set of basis functions for time t as those
used for the American stock put options.

4.3 Results for American Put Options: Real Data

For real data, a pricing method can learn an exercise policy either 1) from sample
paths generated from a simulation model; or, 2) from sample paths composed
from real data directly. The testing sample paths are from real data. We scale
the stock prices, so that, for each company, the initial price for each training
path and each testing path is the same as the first price of the whole price series
of the company.

Now we proceed with the first approach. The simulation model for the under-
lying stock process follows the GBM in (4) or the SV model in (7). For the GBM
model, the constant volatility σ is estimated from the training data with MLE.
For the SV model, we use the popular GARCH(1,1) to estimate the parameters,
ω, α and β in (7). In this case, for options with quarterly, semi-annual and an-
nual maturities respectively, the first 662, 625 and 751 stock prices are used for
estimating parameters in (4) and in (7). Then LSPI, FQI and LSM learn exercise
policies with 50,000 sample paths, generated using the models in (4) or in (7)
with the estimated parameters. We call this approach of generating sample paths
from a simulation model with parameters estimated from real data as LSPI mle,
LSPI garch, FQI mle, FQI garch, LSM mle and LSM garch, respectively.

In the second approach, a pricing method learns the exercise policy from
sample paths composed from real data directly. Due to the scarcity of real data,
as there is only a single trajectory of stock price time series for each company,
we construct multiple trajectories following a windowing technique. For each
company, for quarterly, semi-annual, annual maturity terms, we obtain 600, 500,
500 training paths, each with duration = 63, 126, 252 prices. The first path is
the first duration days of stock prices. Then we move one day ahead and obtain
the second path, and so on. LSPI and LSM then learn exercise policies on these
training paths. We call this approach of generating sample paths from real data
directly as LSPI data, FQI data and LSM data, respectively.

After the exercise policies are found by LSPI, FQI and LSM, we compare their
performance on testing paths. For each company, for quarterly, semi-annual, an-
nual maturity terms, we obtain 500, 450, 250 testing paths, each with duration =

Policy Iteration for Learning an Exercise Policy for American Options 173

63, 126, 252 prices, as follows. The first path is the last duration days of stock
prices. Then we move one day back and obtain the second path, and so on.

For each maturity term of each of the Dow Jones 30 companies, we average
payoffs over the testing paths. Then we average the average payoffs over the 30
companies. Table 1 shows the results for each company and the average over 30
companies for semi-annual maturity. Table 2 presents the average results. These
results show that LSPI and FQI gain larger average payoffs than LSM.

Table 1. Payoffs of LSPI mle, LSPI garch, LSPI data, FQI mle, FQI garch, FQI data,
LSM mle, LSM garch, and LSM data, for American put stock options of Dow Jones
30 companies, with semi-annual maturity. Interest rate r = 0.03. 500 sample paths
are composed for the discovery of exercise policies. The results are averaged over 450
testing paths.

Name LSPI FQI LSM
mle garch data mle garch data mle garch data

3M 2.448 2.404 3.329 2.852 2.370 3.477 0.944 0.944 1.194
Alcoa 2.403 2.400 2.361 2.414 2.403 2.362 0.952 0.943 0.943
Altria 0.213 0.212 0.212 0.214 0.212 0.212 0.277 0.277 0.314
American Express 0.722 0.721 0.730 0.723 0.807 1.029 0.375 0.375 0.539
American Intl Group 4.359 4.298 4.475 4.892 5.364 5.723 1.733 1.733 2.186
AT&T 0.700 0.703 0.703 0.702 0.703 0.702 0.326 0.326 0.497
Boeing 0.118 0.117 0.112 0.117 0.118 0.117 0.324 0.274 0.274
Caterpillar 0.782 0.809 0.791 0.791 0.745 0.754 0.385 0.386 0.518
Citigroup 0.634 0.635 0.632 0.634 0.635 0.635 0.350 0.364 0.488
du Pont 2.244 2.266 2.174 2.181 2.119 2.081 0.855 0.784 0.784
Exxon Mobile 0.216 0.218 0.216 0.218 0.460 0.217 0.317 0.317 0.317
GE 0.846 0.863 0.844 0.849 0.854 0.844 0.331 0.331 0.340
GM 6.414 6.205 6.663 5.911 6.795 6.548 2.045 1.972 3.205
Hewlett-Packard 2.732 2.721 2.639 2.704 2.684 2.663 1.163 1.120 1.545
Honeywell 0.007 0.007 0.007 0.007 0.007 0.007 0.145 0.145 0.173
IBM 0.362 0.369 0.361 0.362 0.361 0.361 0.309 0.309 0.309
Intel 2.572 2.468 2.567 2.515 2.322 2.559 0.920 0.961 0.961
Johnson & Johnson 7.482 7.256 7.513 7.516 6.967 7.257 2.540 2.540 3.480
J. P. Morgan 0.818 0.820 0.818 0.817 0.818 0.816 0.366 0.366 0.366
McDonalds 1.862 1.846 1.893 1.886 1.850 1.873 0.574 0.574 0.868
Merck 0.519 0.518 0.516 0.525 0.517 0.519 0.321 0.321 0.389
Microsoft 0.312 0.308 0.309 0.326 0.309 0.309 0.230 0.230 0.326
Pfizer 1.989 1.895 1.815 1.859 3.029 1.830 1.014 1.014 1.343
Coca Cola 1.471 1.524 1.730 1.995 1.572 1.771 0.614 0.614 0.839
Home Depot 1.853 1.923 1.951 2.013 2.117 2.821 0.786 0.786 0.862
Procter & Gamble 0.372 0.377 0.825 0.434 0.367 0.389 0.280 0.280 0.280
United Technologies 2.685 2.686 2.685 2.693 2.685 2.685 0.867 0.862 1.415
Verizon 0.668 0.668 0.669 0.669 0.666 0.667 0.268 0.280 0.389
WalMart 2.611 2.612 2.597 2.691 2.597 2.650 1.030 1.030 1.314
Walt Disney 0.030 0.030 0.030 0.030 0.030 0.030 0.160 0.160 0.160
average 1.681 1.663 1.739 1.718 1.749 1.797 0.693 0.687 0.887

174 Y. Li and D. Schuurmans

Table 2. Average payoffs of LSPI, FQI and LSM on real data for Dow Jones 30
companies, with quarterly, semi-annual (repeated from Table 1) and annual maturities.

LSPI FQI LSM
maturity mle garch data mle garch data mle garch data
quarterly 1.310 1.333 1.339 1.321 1.341 1.331 0.573 0.572 0.719

semi-annual 1.681 1.663 1.739 1.718 1.749 1.797 0.693 0.687 0.887
annual 1.599 1.496 1.677 1.832 1.797 2.015 0.717 0.685 0.860

An explanation for LSPI and FQI gaining larger payoffs is that LSPI and
FQI optimize weights across all time steps, whereas LSM is a value iteration
procedure that makes a single backward pass through time. Thus, LSPI and
FQI are able to eliminate some of the local errors.

LSM computes different sets of weights for the basis functions for different
time steps; thus it generalizes over the space for asset prices. In contrast, LSPI
and FQI deploy function approximation for both stock price and time, so that
they generalize over both the space for asset prices and the space for time.
Therefore LSM has a stronger representation than LSPI and FQI. However,
LSPI and FQI outperform LSM.

4.4 Results for American Put Options: Synthetic Data

We evaluate the performance of LSPI, FQI and LSM with synthetic sample
paths. The parameters for the GBM model in (4) and the SV model in (7) can
either 1) be estimated from real data; or, 2) be set in some arbitrary manner.
The training sample paths and the testing sample paths are generated using the
same model with the same parameters.

Now we proceed with the case in which model parameters are estimated from
real data. For each company, after estimating parameters for either the GBM
model or the SV model from real data, we generate 50,000 sample paths with
these parameters. LSPI, FQI and LSM discover the exercise policies with these
sample paths. For each company, we evaluate the performance of the discovered
policies on 10,000 testing paths, generated with the estimated parameters. The
initial stock price in each of the sample path and each of the testing path is set
as the first price in the time series of the company.

For each of the Dow Jones 30 companies, we average payoffs over 10,000
testing paths. Then we average the average payoffs over the 30 companies. The

Table 3. Average payoffs on synthetic data with parameters estimated from real data

maturity GBM model SV model
term LSPI FQI LSM LSPI FQI LSM

quarterly 2.071 2.054 2.044 1.889 1.866 0.785
semi-annual 2.771 2.758 2.742 2.546 2.530 0.997

annual 3.615 3.645 3.580 3.286 3.311 1.241

Policy Iteration for Learning an Exercise Policy for American Options 175

results in Table 3 show that LSPI and FQI gain larger payoffs than LSM, both
in the GBM model and in the SV model, with interest rate r = 0.03.

Again, an explanation for that LSPI and FQI gain larger payoffs is that LSPI
and FQI optimize weights across all time steps, whereas LSM makes a single
backward pass through time. LSPI and FQI follow the policy iteration approach,
so that the policies they discover improve iteratively. LSM learns the policy only
once in the backward-recursive approach with least squares regression.

We also vary various parameters for either the GBM or the SV model to
generate synthetic sample paths. We vary the interest rate r from 0.01, 0.03
to 0.05, and set the strike price K (initial stock price) to 50. With GBM, we
vary the constant volatility σ from 0.1, 0.3 to 0.5. With the SV model, we vary
β from 0.2, 0.5 to 0.8, and set α = 0.96 − β. We test the learned policies on
testing paths generated with the same model and the same parameters. Results
in Table 4 show that LSPI and FQI have similar performance as LSM in the
experiments with synthetic data generated with the GBM model. Results in
Table 5 show that LSPI and FQI outperform LSM in the experiments with
synthetic data generated with the SV model. We believe the SV model, where
volatility is stochastic, models the stock movement better than the GBM model,
where the volatility is constant.

In Figure 1, we present the exercise boundaries discovered by LSPI, FQI and
LSM. The optimal exercise boundary for an American put option is a monotonic
increasing function, as shown in [6]. Figure 1 (a) for real data from Intel shows
that the exercise boundaries discovered by LSPI and FQI are smooth and respect
the monotonicity, but not the boundary discovered by LSM. The scarcity of
sample paths may explain this non-monotonicity. The boundary of FQI is lower
than that of LSPI, which may explain that FQI gains larger payoffs than LSPI.
Figure 1 (b) shows that the exercise boundary discovered by LSPI is smoother

Table 4. Average Payoffs of LSPI, FQI and LSM. K = 50. Semi-annual maturity.
50,000 training paths and 10,000 testing paths are generated with the GBM model.

r = 0.01 r = 0.03 r = 0.05
σ LSPI FQI LSM LSPI FQI LSM LSPI FQI LSM

0.1 1.294 1.300 1.286 1.095 1.117 1.061 0.925 0.902 0.896
0.3 4.086 4.062 4.095 3.684 3.666 3.679 3.533 3.604 3.504
0.5 6.965 6.798 6.051 6.514 6.521 6.476 6.315 6.274 6.365

Table 5. Average Payoffs of LSPI, FQI and LSM. K = 50. Semi-annual maturity.
50,000 training paths and 10,000 testing paths are generated with the SV model.

r = 0.01 r = 0.03 r = 0.05
β LSPI FQI LSM LSPI FQI LSM LSPI FQI LSM
0.2 0.925 0.931 0.350 0.720 0.721 0.299 0.567 0.555 0.257
0.5 1.167 1.172 0.441 0.960 0.959 0.385 0.792 0.798 0.336
0.8 1.449 1.450 0.548 1.236 1.220 0.485 1.078 1.053 0.430

176 Y. Li and D. Schuurmans

0 20 40 60 80 100 120 140
26

27

28

29

30

31

32

33

Time (trading days)

S
to

ck
 P

ric
e

LSPI
FQI
LSM

20 40 60 80 100 120
45

45.5

46

46.5

47

47.5

48

48.5

49

49.5

50

Time (trading days)

S
to

ck
 P

ric
e

LSPI
FQI
LSM

(a) Real data for Intel, r = 0.03 (b) GBM synthetic data, r = 0.03,
50,000 sample paths, K = S0 = 50.

Fig. 1. Exercise boundaries discovered by LSPI, FQI and LSM. Semi-annual maturity.

and lower than that discovered by LSM. The exercise boundary discovered by
FQI is also smooth. It crosses those of LSPI and LSM.

4.5 Results for American Asian Call Options

The experimental settings for American Asian call options are similar as those
for American put options in Sections 4.3 and 4.4. For the Asian options in the
experiments, there are 21 lockout days, and the average is taken over the stock
prices over the last 21 days.

The experimental results comparing LSPI, FQI and LSM are shown in Table 6
to Table 9. Table 6 shows the results for the real data. Table 7 shows the results
for simulation data with parameters estimated from the real data. Table 8 shows
the results for simulation data generated with the GBM model. Table 9 shows

Table 6. Average payoffs of LSPI, FQI and LSM on real data. Asian options.

LSPI FQI LSM
maturity mle garch data mle garch data mle garch data
quarterly 1.862 1.905 1.938 1.869 1.871 1.872 0.613 0.613 0.613

semi-annual 2.733 2.785 2.827 2.649 2.626 2.687 0.578 0.578 0.578
annual 4.171 4.188 4.376 4.149 4.275 4.187 0.680 0.661 0.681

Table 7. Average payoffs on simulation data with parameters estimated from real data
for Dow Jones 30 companies. Asian options.

maturity GBM model SV model
term LSPI FQI LSM LSPI FQI LSM

quarterly 2.448 2.323 0.817 2.143 2.044 0.735
semi-annual 3.951 3.897 0.822 3.573 3.377 0.738

annual 6.197 6.030 0.955 5.359 5.128 0.858

Policy Iteration for Learning an Exercise Policy for American Options 177

Table 8. Average Payoffs of LSPI, FQI and LSM. K = 50. Semi-annual maturity.
50,000 training paths and 10,000 testing paths, GBM model. Asian options.

r = 0.01 r = 0.03 r = 0.05
σ LSPI FQI LSM LSPI FQI LSM LSPI FQI LSM

0.1 1.681 1.427 0.340 1.857 1.630 0.359 2.110 1.630 0.383
0.3 4.694 4.613 1.007 5.064 4.913 1.027 5.340 4.913 1.058
0.5 7.980 7.796 1.702 6.721 7.886 1.722 8.400 7.886 1.700

Table 9. Average Payoffs of LSPI, FQI and LSM. K = 50. Semi-annual maturity.
50,000 training paths and 10,000 testing paths, SV model. Asian options.

r = 0.01 r = 0.03 r = 0.05
β LSPI FQI LSM LSPI FQI LSM LSPI FQI LSM
0.2 1.068 1.018 0.214 1.347 1.269 0.235 1.614 1.540 0.257
0.5 1.342 1.234 0.278 1.607 1.489 0.299 1.881 1.759 0.321
0.8 1.697 1.516 0.361 1.915 1.755 0.381 2.172 2.009 0.402

the results for simulation data generated with the SV model. These results show
that LSPI gains similar payoffs as FQI, and both LSPI and FQI gains larger
payoffs than LSM.

5 Conclusions

Options are important financial instruments, whose prices are usually deter-
mined by computational methods. Computational finance is a compelling appli-
cation area for reinforcement learning research, where hard sequential decision
making problems abound and have great practical significance. Our work shows
that solution methods developed in reinforcement learning can advance the state
of the art in an important and challenging application area, and demonstrates
furthermore that computational finance remains an under-explored area for de-
ployment of reinforcement learning methods.

We investigate LSPI for the problem of learning an exercise policy for Amer-
ican options, and compare it with FQI, another policy iteration method, and
LSM, the standard least squares Monte Carlo method, on both real and syn-
thetic data. The results show that the exercise policies discovered by LSPI and
FQI gain larger payoffs than those discovered by LSM, on both real and syn-
thetic data. The empirical study shows that LSPI, a solution technique from the
reinforcement learning literature, as well as FQI, is superior to LSM, a standard
technique from the finance literature, for pricing American options, a classical
sequential decision making problem in finance.

It is desirable to theoretically analyze the policy iteration algorithm for learn-
ing an exercise policy for American options, e.g., following the approach in [1].

178 Y. Li and D. Schuurmans

References

[1] Antos, A., Szepesvari, C., Munos, R.: Learning near-optimal policies with bellman-
residual minimization based fitted policy iteration and a single sample path. Ma-
chine Learning Journal 71, 89–129 (2008)

[2] Bertsekas, D.P.: Dynamic programming and optimal control. Athena Scientific,
Massachusetts (1995)

[3] Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific,
Massachusetts (1996)

[4] Bradtke, S.J., Barto, A.G.: Linear least-squares algorithms for temporal difference
learning. Machine Learning 22(1-3), 33–57 (1996)

[5] Broadie, M., Detemple, J.B.: Option pricing: valuation models and applications.
Management Science 50(9), 1145–1177 (2004)

[6] Duffie, D.: Dynamic asset pricing theory. Princeton University Press, Princeton
(2001)

[7] Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New
York (2004)

[8] Hull, J.C.: Options, Futures and Other Derivatives, 6th edn. Prentice Hall, En-
glewood Cliffs (2006)

[9] Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. The Journal of Ma-
chine Learning Research 4, 1107–1149 (2003)

[10] Longstaff, F.A., Schwartz, E.S.: Valuing American options by simulation: a simple
least-squares approach. The Review of Financial Studies 14(1), 113–147 (Spring,
2001)

[11] Moody, J., Saffell, M.: Learning to trade via direct reinforcement. IEEE Transac-
tions on Neural Networks 12(4), 875–889 (2001)

[12] Puterman, M.L.: Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, New York (1994)

[13] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

[14] Tsitsiklis, J.N., Van Roy, B.: Regression methods for pricing complex American-
style options. IEEE Transactions on Neural Networks (special issue on computa-
tional finance) 12(4), 694–703 (2001)

Tile Coding Based on Hyperplane Tiles

Daniele Loiacono1 and Pier Luca Lanzi1,2

1 Artificial Intelligence and Robotics Laboratory (AIRLab),
Politecnico di Milano. P.za L. da Vinci 32, I-20133, Milano, Italy

2 Illinois Genetic Algorithm Laboratory (IlliGAL),
University of Illinois at Urbana Champaign,

Urbana, IL 61801, USA
{loiacono,lanzi}@elet.polimi.it

Abstract. In large and continuous state-action spaces reinforcement
learning heavily relies on function approximation techniques. Tile cod-
ing is a well-known function approximator that has been successfully
applied to many reinforcement learning tasks. In this paper we intro-
duce the hyperplane tile coding, in which the usual tiles are replaced by
parameterized hyperplanes that approximate the action-value function.
We compared the performance of hyperplane tile coding with the usual
tile coding on three well-known benchmark problems. Our results sug-
gest that the hyperplane tiles improve the generalization capabilities of
the tile coding approximator: in the hyperplane tile coding broad gener-
alizations over the problem space result only in a soft degradation of the
performance, whereas in the usual tile coding they might dramatically
affect the performance.

1 Introduction

Generalization plays a key role when reinforcement learning is applied to large
and complex problems and it is usually implemented by function approximation.
Among the several function approximators introduced in the literature [4,8], tile
coding [7] is one of the most used. Tile coding provides a piece-wise constant
approximation of the target action-value function but it usually requires many
tiles to accurately approximate it. In tile coding the state-action space is repre-
sented as a set of overlapping tilings ; each tiling partitions the space into a set
of nonoverlapping tiles which identify simple problem subspaces. Each tiles is
associated to a weight which is updated through online experience.

In this paper we extend tile coding and we introduce the idea of hyperplane tile
coding: the original tiles are replaced by hyperplane tiles, so that the resulting tile
coding provides a piece-wise linear approximation of the action-value function,
instead of the usual piece-wise constant approximation. We empirically show
that hyperplane tile coding outperforms tile coding when a broad generalization
on the problem space is allowed.

The paper is organized as follows. In Section 2 we briefly discuss generalization
in reinforcement learning and tile coding. In Section 3 we describe in detail our
extension based on hyperplane tiles. In Section 4 we describe the design of the

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 179–190, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

180 D. Loiacono and P.L. Lanzi

experiments discussed in Section 5. Finally in Section 6 we draw the conclusions
on our work.

2 Generalization in Reinforcement Learning

In this section we briefly introduce the notation and the basic understanding
useful for the rest of this work. We assume that the reader is familiar with
reinforcement learning and with tile coding (we refer the interested reader to [8]
for an extensive introduction to these topics).

Reinforcement learning has proved to be effective when the action-value func-
tion is represented as a look-up table and each state-action pair is visited an ade-
quate number of times. Unfortunately both these assumptions do not hold in real
problems with large and often continuous state-action spaces. In fact, (i) mem-
ory requirements to store look-up tables quickly become infeasible; moreover,
(ii) visiting adequately each state-action pair is dramatically time consuming
and very often impossible. These problems raise the issue of generalization: how
to represent the action-value function Q(s, a) compactly while reusing collected
experience in areas of the problem space scarcely or even never visited.

Generalization in reinforcement learning is usually implemented with function
approximation methods: Q(s, a) is represented as a function f parameterized by
a vector θ which is learned from on-line experience.

2.1 Tile Coding

Several types of approximators have been introduced in the literature, e.g. RBF[3],
neural networks [9]. Among the others, linear approximators [8] are the most used
and seem to be the most reliables [4]. Tile coding [7] is one the most known and
successfull approach to generalized reinforcement learning. It combines linear
approximation with an input mapping function φ(s) that translates the state s
into a vector of N binary features 〈φ1(s), . . . φN (s)〉. Accordingly, the value of
Q(s, a) is computed as φ(s) · θa, where θa is a vector of N parameters associated
to action a.1 In tile coding the state space is represented as a set of t overlapping
tilings. Each tiling partitions the state space into a set of non-overlapping tiles
and each tile defines a regular subspace in the state space. Given the state s, the
component φi(s) of the features vector associated to the i-th tile is computed as,

φi(s) =

{
0 if s /∈ tilei,
1 if s ∈ tilei.

(1)

Figure 1 shows an example of a one-dimensional tile coding in which the in-
put space is represented by four tilings, i.e. t = 4. In general, tilings might
be placed randomly but, in practice, they are placed to cover the whole input
1 Here we assume for simplicity that tile coding is used to generalize only over the

state space and not over the action space. Several problems in the RL literature
involve a small discrete action space and thus this assumption is often verified in
practice; anyway all the considerations and results discussed here still hold when
generalization involves also the action space.

Tile Coding Based on Hyperplane Tiles 181

Fig. 1. Example of one dimensional tile coding

space regularly [8]: each tiling consists of tiles of width w and consecutive tilings
are displaced by a resolution r as in Figure 1. Therefore, t, r and w are not
three independent parameters but they are linked by the following relationship,
r = w/t. In the following of this section we briefly discuss how the parameters
〈r, t, w〉 affects the performance of tile coding.

Resolution (r). This is probably the most important parameter. Tile coding
is a piece-wise constant approximator [7], i.e. it approximate the action-value
function by partitioning the state space into small regions with a constant payoff
value; resolution r actually represents the width of these small regions. It is also
worth noting that r completely defines the number of tiles necessary to cover the
whole state space, i.e. the smaller r, the larger is the number N of tiles required;
more precisely,

N = t

⌈
|S|
w

⌉
=

⌈
|S|
r

⌉
,

where |S| is the hypervolume defined by the whole state space.

Tiles Width (w). This actually defines how large are the regions of the state space
associated to a single parameter and thus defines how broad generalization is. In
a recent work [5] Sherstov and Stone analyzed how the parameter w affects the
the learning speed. In the early stage of the learning process, large values of w
result in learning very quickly a good approximation of the action-value function,
whereas small values lead to very poor learning speed. On the other hand, broad
generalizations (i.e. higher values of w), may be disruptive at convergence in
terms of final performance [5].

Number of Tilings (t). The number of tiling t is often used to obtain the desired
value of w. In fact, r should be fixed on the basis of the problem action-value
function, whereas t can be accordingly fixed to achieve the desired value ofw. The
larger t, the broader the generalization is (remember that w = rt), the smaller t,
the narrower generalization is. The value of t may also affect the computational
complexity of the tile coding approximator: in some implementations the order
of computational complexity is linear in t.

182 D. Loiacono and P.L. Lanzi

3 Extending Tile Coding with Hyperplane Tiles

Tile coding learns a piece-wise constant approximation of the action-value func-
tion; thus, it requires a small value of r in order to accurately approximate
the payoff surface. Here we introduce an extension of tile coding by replacing
the scalar weight associated to each tile with a parameterized hyperplane; this
new tile coding version requires two main modifications and we refer to it as
hyperplane tile coding.

First in hyperplane tile coding the weight θa,i associated to each tile is replaced
by a pair 〈pa,i, qa,i〉, where pa,i is a parameter vector with the same numbers
of variables of the state space S and where qa,i is a constant coefficient. The
contribution of the i-th active tile in a given state s is no more a scalar weight
θa,i (not dependent from s) but is computed as,

θa,i(s) = pa,i · s + qa,i (2)

where pa,i · s is a scalar vector product. The geometric interpretation of Equa-
tion 2 is a high dimensional plane, i.e., each tile represents a hyperplane approx-
imating the action-value function. The computation of the action-value function
Q(s, a) does not substantially differ from standard tile coding:

Q(s, a) = φ(s) · θa(s) (3)

where θa(s) is the vector 〈θa,1(s), · · · , θa,N(s)〉 of the contributions of the N tiles
associated to action a computed accordingly to the Equation 2.

Finally, in hyperplane tile coding, the learning of θa,i is replaced by the learn-
ing of the pairs 〈pa,i, qa,i〉; at each time step, the parameters of each active tile
are adjusted using the NLMS [2] update rule:

pa,i ← pa,i +
α

t
· δ · s

(1 + |s|2) (4)

qa,i ← qa,i +
α

t
· δ · 1

(1 + |s|2) (5)

where 〈pa,i, qa,i〉 are the parametersof an active tile i in the last visited state-action
pair (s, a), α is the learning rate, t is the tiling number, and δ is the error of the
actual estimate of the action-value functionQ(s, a). The computation of δ actually
depends on the reinforcement learning algorithm used (e.g. Q-learning SARSA,
etc.). As an example, Algorithm 1 reports the pseudo code for the implementation
of Q-learning based on hyperplane tile coding.

Overall hyperplane tile coding provides a piece-wise linear approximation of
the payoff surface whereas standard tile coding actually provides a piece-wise
constant approximator [7]. Figure 2 compares hyperplane tile coding to usual
tilecoding on the approximation of a sinusoidal function; the figure shows the
learned approximation after 1000 training samples (Figure 2, top row) and after
100000 samples (Figure 2, bottom row). Standard tile coding (Figure 2, left
column) learns constant valued tiles (the thick solid lines) that overall results in a

Tile Coding Based on Hyperplane Tiles 183

TC after 1000 samples

TARGET
APPROX

Hyperplane TC after 1000 samples

TARGET
APPROX

TC after 100000 samples

TARGET
APPROX

Hyperplane TC after 100000 samples

TARGET
APPROX

Fig. 2. Approximation capabilities of tile coding and hyperplane tile coding. Thick
lines represent the contribution of every single tile.

piece-wise constant approximation as accurate as allowed by the given resolution
r. Instead, hyperplane tile coding (Figure 2, right column) slowly adapts the
slope of each tile to fit the slope of the target function, leading to a more accurate
final approximation of the target function. Hyperplane tiles increase the number
of parameters and thus the computational complexity both in terms of memory
and time. On the other hand hyperplane tiles seem to result in a more accurate
approximation (Figure 2) of the value function and thus may allow to use a
larger value of tiling resolution r without affecting negatively the performance.
Moreover the simple experiment reported in Figure 2 suggests that adapting
effectively the hyperplane tiles may require a lot of training. In the next sections
we present an empirical analysis of the performances of hyperplane tile coding.

4 Experimental Design

In order to test the capabilities of the hyperplane tile coding we considered three
well-known problems widely studied in the reinforcement learning literature [1,7]:
the 2D gridworld, the puddle world, and the mountain car.

In this paper, we compared the performance of tile coding and hyperplane
tile coding using Q-learning with a discount factor γ = 1.0 and a learning rate
α = 0.2. A run consists of a sequence of episodes; each episode starts from a ran-
dom point in the state space S and ends when a terminal state is reached. Each
episode can last at most 500 steps in the 2D gridworld and in the puddle world;
in the mountain car, an episode can last for at most 5000 steps; when this limit
is reached the episode stops even if the goal is not reached. In learning episode
the actions performed are selected according to an ε-greedy exploration policy (in

184 D. Loiacono and P.L. Lanzi

Algorithm 1. Hyperplane tile coding with Q-learning
1: 〈p[a][i], q[a][i]〉 ← 〈0, 0〉 for each action a and tile i � Initialization
2: for all episode do
3: t ← 0 � Initialize the time step t
4: Randomly initialize st � Initialize the problem state
5: while ((st is not terminal) AND (t < MaxSteps)) do
6: for all action a do
7: Q[a] ← φ(st) · θa(st)
8: end for
9: if ((learning episode) AND (random() < ε)) then � Take a random action

10: at ← random action
11: else � Take the best action according to Q[·]
12: at ← argmaxaQ[a]
13: end if
14: Take action at; observe rt+1 and st+1

15: for all action a do
16: NextQ[a] ← φ(st+1) · θa(st+1)
17: end for
18: δ = rt+1 + γ maxa′(NextQ[a′]) − Q[at]
19: for all tile i active in st do
20: p[at][i] ← p[at][i] + αδst/(1 + |st|2)
21: q[at][i] ← q[at][i] + αδ/(1 + |st|2)
22: end for
23: t ← t + 1
24: end while
25: if (learning episode) then
26: Set next episode as test episode
27: else
28: Set next episode as learning episode
29: end if
30: end for

the experiments reported in this paper we always set ε = 0.5). In test episodes,
the best action is always selected. Learning episodes and test episodes alternate.
The learning episodes are used to explore the state-action space whereas the test
episodes are used to measure the system performance. In this paper we used the
same measures of performance reported by [7]: (i) in the 2D gridworld and in
the mountain car, the performance is computed as the average number of steps
necessary to reach the goal; (ii) in the puddle world, the performance is computed
as the average cost per episode. In addition, we evaluated the performance of
the learned policy at two different stages of the learning process. First, the
average performance of the learned policy in the first 50 episodes is evaluated
as a measure of the learning speed. Second, the performance is evaluated at the
end of the learning process as a measure of the quality of the learned policy. All
the statistics reported in this paper are averaged over 20 runs. In addition to
the performance measures introduced above, we are also interested in measuring
the number of tiles used by the approximators in each experiment.

Tile Coding Based on Hyperplane Tiles 185

5 Experimental Results

In the first experiment we applied tile coding and hyperplane tile coding to the
2D gridworld problem. Figure 3 compares the performance of the two approx-
imators in the first 1000 episodes. The results show that the usual tile coding
performs slightly better than hyperplane tile coding at the very beginning of the
learning process. On the other hand, the hyperplane tile coding is able to reach
an optimal or near-optimal performance with all the parameter settings, while
the usual tile coding exhibits a poor performance when the higher value of the
resolution parameter (r = 0.04) is used. A summary of the results, including also
two additional parameter settings, is reported in Table 1. Table 1a shows the
performance in the first 50 test episodes while Table 1b shows the final perfor-
mance. The first column reports the parameter setting used, the second column
reports the number of tiles N used; the columns TC and HTC report the per-
formance of respectively the usual tile coding and of the hyperplane tile coding;
to compare the performance of tile coding and of hyperplane tile coding we first
performed a Levene’s test for equal variance followed by a t-test for independent
samples and we reported the resulting p-values in the last column of the table.
The results on the first 50 test episodes (Table 1a) show, as expected, that both
tile coding (column TC in Table 1a) and hyperplane tile coding (column HTC
in Table 1a) perform better with high values of w: the broader are the tiles,
i.e., the higher is the value of w, the faster is learning. It is also worth noting
that, with the same width w, high values of r may negatively affect the learning
speed: when w = 0.16 both tile coding (TC) and hyperplane tile coding (HTC)
perform better when r is small (r = 0.01). The p-values in Table 1a suggest that,
although the difference between the two approximators is not always significant,

 50

 100

 150

 200

 250

 0 200 400 600 800 1000

AV
ER

AG
E

N
U

M
BE

R
 O

F
ST

EP
S

LEARNING PROBLEMS

TC (r=0.0025, t=16, w=0.04)
HTC (r=0.0025, t=16, w=0.04)

TC (r=0.01, t=16, w=0.16)
HTC (r=0.01, t=16, w=0.16)

TC (r=0.04, t=16, w=0.64)
HTC (r=0.04, t=16, w=0.64)

Fig. 3. Tile coding (TC) and hyperplane tile coding (HTC) applied to the 2D gridworld
problem using different values of the parameters r, w and t. Curves are averages on 20
runs.

186 D. Loiacono and P.L. Lanzi

Table 1. Comparison of tile coding (TC) and hyperplane tile coding (HTC) on the
2D gridworld problem. Average number of steps to reach the goal (a) in the first 50
learning episodes and (b) after 100000 learning episodes.

〈r, t, w〉 N TC (µ ± σ) HTC (µ ± σ) p-value
〈.0025, 16, .04〉 400 130.70 ± 12.82 131.92 ± 13.13 0.787
〈.01, 4, .04〉 100 154.40 ± 13.19 168.165 ± 13.8612 0.031
〈.01, 16, .16〉 100 74.86 ± 9.27 81.70 ± 7.77 0.003
〈.04, 4, .16〉 25 100.69 ± 11.83 122.07 ± 14.42 0.006
〈.04, 16, .64〉 25 72.00 ± 13.08 89.40 ± 17.90 0.000

(a)

〈r, t, w〉 N TC (µ ± σ) HTC (µ ± σ) p-value
〈.0025, 16, .04〉 400 22.09 ± 0.07 21.96 ± 0.06 0.000
〈.01, 4, .04〉 100 22.77 ± 0.10 21.97 ± 0.05 0.000
〈.01, 16, .16〉 100 22.78 ± 0.08 22.01 ± 0.09 0.000
〈.04, 4, .16〉 25 41.06 ± 0.70 22.20 ± 0.09 0.000
〈.04, 16, .64〉 25 41.56 ± 0.64 22.29 ± 0.08 0.000

(b)

hyperplane tile coding appears to be usually slower than tile coding. This is not
surprising because, as reported in Section 3, adapting the hyperplane tiles to
fit the payoff surface may require a lot of experience. On the other hand, the
final performances reported in Table 1b show that hyperplane tile outperforms
the usual tile coding by exploiting its better approximation capabilities. In fact,
while tile coding suffers from a dramatic decrease of performance when the num-
ber of tiles is reduced from 100 to 25, hyperplane tile coding only exhibits a soft
degradation of the performance from an average of 22.01 steps to 22.20 steps.
However, hyperplane tile coding requires three parameters for each tile whereas
tile coding requires only one parameter for each tile, i.e., given the same num-
ber of tiles, hyperplane tile coding requires three times more the number of
parameters required by standard tile coding. Anyway, even when we are fair
and compare the performance of tile coding with N=100 with the performance
of hyperplane tile coding with N=25, we still find that hyperplane tile coding
performs significantly better than tile coding.

In the second experiments we applied tile coding and hyperplane tile cod-
ing to a slightly more complex problem, the puddle world problem. Figure 4
compares the performance, computed as the average cost per episode [7], of tile
coding and hyperplane tile coding in the first 1000 episodes. The results con-
firm what was previously found: although the hyperplane tile coding is slightly
slower than tile coding, it reaches an optimal or near-optimal performance with
all the parameters settings. Table 5a reports the performance of tile coding and
hyperplane tile coding in the first 50 test episodes. In this case, the disruptive
effects of a higher value of r on the initial learning speed is even more evident.

Tile Coding Based on Hyperplane Tiles 187

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000

AV
ER

AG
E

C
O

ST
 P

ER
 E

PI
SO

D
E

LEARNING PROBLEMS

TC (r=0.0025, t=16, w=0.04)
HTC (r=0.0025, t=16, w=0.04)

TC (r=0.01, t=16, w=0.16)
HTC (r=0.01, t=16, w=0.16)

TC (r=0.04, t=16, w=0.64)
HTC (r=0.04, t=16, w=0.64)

Fig. 4. Tile coding (TC) and hyperplane tile coding (HTC) applied to the puddle world
problem using different values of the parameters r, w and t. Curves are averages on 20
runs.

 40

 60

 80

 100

 120

 140

 160

 180

 0 400 800 1200 1600 2000

AV
ER

AG
E

N
U

M
BE

R
 O

F
ST

EP
S

LEARNING PROBLEMS

TC (r=0.04%, t=16, w=0.64%)
HTC (r=0.04%, t=16, w=0.64%)

TC (r=0.16%, t=16, w=2.56%)
HTC (r=0.16%, t=16, w=2.56%)

TC (r=1.0%, t=4, w=4.0%)
HTC (r=1.0%, t=4, w=4.0%)

Fig. 5. Tile coding (TC) and hyperplane tile coding (HTC) applied to the mountain
car problem using different values of the parameters r, w and t. Curves are averages
on 20 runs.

For instance, both tile coding and hyperplane tile coding perform better when
w = 0.16 and r = 0.01 than using w = 0.64 and r = 0.04. The final performances
(Table 5b) suggest that hyperplane tile coding is more reliable especially when
few resources, i.e., few tiles, are used.

Finally, we compared the two versions of tile coding on the mountain car prob-
lem. Figure 5 shows the performance in the first 1000 episodes. As in the previous
experiments with a broad resolution the hyperplane tile coding is able to out-

188 D. Loiacono and P.L. Lanzi

Table 2. Comparison of tile coding (TC) and hyperplane tile coding (HTC) on the
puddle world problem. Average number cost per episode to reach the goal (a) in the
first 50 learning episodes and (b) after 100000 learning episodes.

〈r, t, w〉 N TC (µ ± σ) HTC (µ ± σ) p-value
〈.0025, 16, .04〉 400 67.94 ± 5.00 69.12 ± 6.41 0.559
〈.01, 4, .04〉 100 80.99 ± 6.66 86.44 ± 7.08 0.455
〈.01, 16, .16〉 100 44.16 ± 6.95 45.58 ± 3.19 0.021
〈.04, 4, .16〉 25 61.82 ± 10.45 64.05 ± 8.72 0.029
〈.04, 16, .64〉 25 45.81 ± 8.455 53.77 ± 10.20 0.510

(a)

〈r, t, w〉 N TC (µ ± σ) HTC (µ ± σ) p-value
〈.0025, 16, .04〉 400 11.66 ± 0.07 11.54 ± 0.05 0.000
〈.01, 4, .04〉 100 12.27 ± 0.07 11.62 ± 0.05 0.000
〈.01, 16, .16〉 100 12.37 ± 0.06 11.66 ± 0.05 0.000
〈.04, 4, .16〉 25 22.70 ± 0.32 11.99 ± 0.05 0.000
〈.04, 16, .64〉 25 23.23 ± 0.76 12.15 ± 0.06 0.000

(b)

Table 3. Comparison of tile coding (TC) and hyperplane tile coding (HTC) on the
mountain car problem. Average number of steps per episode to reach the goal (a) in
the first 50 learning episodes and (b) after 250000 learning episodes. The value r% and
w% are respectively r/|S| and w/|S|.

〈r%, t, w%〉 N TC (µ ± σ) HTC (µ ± σ) p-value
〈.01, 64, .64〉 10000 216.57 ± 34.06 224.25 ± 52.68 0.902
〈.04, 16, .64〉 2500 146.79 ± 33.11 160.00 ± 31.16 0.168
〈.16, 16, 2.56〉 625 241.56 ± 41.89 243.38 ± 40.97 0.355

〈1., 4, 4.〉 100 182.62 ± 51.24 167.11 ± 42.18 0.620

(a)

〈r%, t, w%〉 N TC (µ ± σ) HTC (µ ± σ) p-value
〈.01, 64, .64〉 10000 56.58 ± 0.33 56.12 ± 0.36 0.000
〈.04, 16, .64〉 2500 68.17 ± 0.43 58.95 ± 0.46 0.000
〈.16, 16, 2.56〉 625 60.23 ± 0.34 57.63 ± 0.35 0.000

〈1., 4, 4.〉 100 122.95 ± 2.43 61.20 ± 0.32 0.000

(b)

perform the usual tile coding, achieving a good tradeoff between the number of
parameters used and the final performance. In the first 50 test episodes (Table 3a)
hyperplane tile coding always performs worse than tile coding, nevertheless such
difference is not always statistically significant. However, the final performances

Tile Coding Based on Hyperplane Tiles 189

show that hyperplane tile coding always perform significantly better than tile
coding and, as usual, it provides a soft degradation of the performance when the
number of tiles is dramatically reduced.

6 Conclusions

We have introduced hyperplane tile coding, an extension of tile coding in which
the usual tiles are replaced by hyperplanes: the original weight associated to each
tile is thus replaced by a parameterized hyperplane. The proposed extension leads
to an increase of the computational complexity, both in terms of memory and
time, that is linear in the number of problem variables. On the other hand, the
use of hyperplanes instead of the usual piece-wise constant ones seems to require
fewer tiles to provide an accurate approximation of the action-value function.
Therefore, although theoretically more expensive, hyperplane tile coding might
result in practice cheaper than standard tile coding. We compared empirically
the standard tile coding with the hyperplane tile coding on three well-known
benchmark problems. Our results suggest that hyperplane tile coding (i) pro-
vides robust performance when the number of parameters is reduced; (ii) can
perform slightly (though significantly) better than tile coding with less memory
requirements. Although the results obtained are still preliminary, we think that
hyperplane tile coding might be a promising alternative to the standard tile cod-
ing. Future work will include the extension of the hyperplane tile coding with
more effective update algorithms such as K1 or IDBD [6].

References

1. Boyan, J.A., Moore, A.W.: Generalization in reinforcement learning: Safely approx-
imating the value function. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Ad-
vances in Neural Information Processing Systems, vol. 7, pp. 369–376. The MIT
Press, Cambridge (1995)

2. Haykin, S.: Adaptive Filter Theory. Prentice-Hall information and system sciences
series (2002)

3. Kretchmar, R., Anderson, C.: Comparison of CMACs and radial basis functions for
local function approximators in reinforcement learning. In: Proceedings of the IEEE
International Conference on Neural Networks, Houston, TX, pp. 834–837 (1997)

4. Reynolds, S.I.: Reinforcement Learning with Exploration. Ph.D thesis, School of
Computer Science. The University of Birmingham, Birmingham, B15 2TT (Decem-
ber 2002)

5. Sherstov, A.A., Stone, P.: Function approximation via tile coding: Automating pa-
rameter choice. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS, vol. 3607, pp.
194–205. Springer, Heidelberg (2005)

6. Sutton, R.S.: Gain adaptation beats least squares? In: Proceedings of the Seventh
Yale Workshop on Adaptive and Learning Systems, pp. 161–166. Yale University,
New Haven (1992)

190 D. Loiacono and P.L. Lanzi

7. Sutton, R.S.: Generalization in reinforcement learning: Successful examples using
sparse coarse coding. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Ad-
vances in Neural Information Processing Systems, vol. 8, pp. 1038–1044. The MIT
Press, Cambridge (1996)

8. Sutton, R.S., Barto, A.G.: Reinforcement Learning – An Introduction. MIT Press,
Cambridge (1998)

9. Tesauro, G.: TD-gammon, a self-teaching backgammon program, achieves master-
level play. Neural Computation 6(2), 215–219 (1994)

Use of Reinforcement Learning in Two Real
Applications�

José D. Martı́n-Guerrero, Emilio Soria-Olivas, Marcelino Martı́nez-Sober,
Antonio J. Serrrano-López, Rafael Magdalena-Benedito, and Juan Gómez-Sanchis

Intelligent Data Analysis Laboratory, Department of Electronic Engineering
University of Valencia, Spain

{jose.d.martin,idal}@uv.es

Abstract. In this paper, we present two sucessful applications of Reinforcement
Learning (RL) in real life. First, the optimization of anemia management in pa-
tients undergoing Chronic Renal Failure is presented. The aim is to individualize
the treatment (Erythropoietin dosages) in order to stabilize patients within a tar-
geted range of Hemoglobin (Hb). Results show that the use of RL increases the
ratio of patients within the desired range of Hb. Thus, patients’ quality of life is
increased, and additionally, Health Care System reduces its expenses in anemia
management. Second, RL is applied to modify a marketing campaign in order to
maximize long-term profits. RL obtains an individualized policy depending on
customer characteristics that increases long-term profits at the end of the cam-
paign. Results in both problems show the robustness of the obtained policies and
suggest their use in other real-life problems.

1 Introduction

Reinforcement Learning (RL) has been widely studied theoretically. There are also
many known applications, especially in Robotics. However, its use to solve problems
beyond Robotics is still scarce. This might be due to the need of large databases to
have meaningful state/action spaces. However, there are many real problems that can
be characterized to be tackled using RL. In this work, we focus on two real applications
of RL:

1. Optimization of anemia management in patients undergoing hemodialysis. This is
a relevant problem in Nephrology, in which we focus on obtaining the optimal
Erythropoietin (EPO) dosages that should be administered for an adequate long-
term anemia management.

2. Optimization of a marketing campaign. In this case, we used data from a marketing
campaign to suggest modifications based on RL to the company policy in order to
maximize long-term profits.

The organization of the paper is as follows. Section 2 is devoted to the problem of
optimization of anemia management. Section 3 focuses on the problem of optimiza-
tion of a marketing campaign. Finally, Section 4 gives some concluding remarks and
suggestions for future work.
� This work has been partially supported by the research projects ARVIV/2007/094, CSD2007-

00018 and TIN2007-61006.

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 191–204, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

192 J.D. Martı́n-Guerrero et al.

2 Optimization of EPO Dosages in Patients Undergoing Chronic
Renal Failure

2.1 Description of the Problem

Anemia is a nearly universal sequel in an End-Stage Renal Disease (ESRD) patient.
Until the advent of EPO, ESRD patients faced severe anemia and cardiovascular com-
plications, or the requirement for multiple transfusions. The addition of this expensive
drug to the already burdensome cost of the Medicare ESRD program involves consid-
erable expenses for the Health Care System (HCS). It is crucial to make a good use of
this drug by means of personalized dosages and number of administrations. This will
guarantee an adequate pharmacotherapy as well as a reasonable cost of the treatment.

Anemia treatment has two stages: correction and maintenance. In the correction
stage, an Erithropoyetic Stimulating Factor (ESF) is used since it is recommended to
increase the Hemoglobin (Hb) level within 4–8 weeks. In the maintenance stage, and
depending on the patient’s response, some changes may be done either in dosages or
weekly number of administrations. It is important to point out that there is an important
risk of side effects associated with ESFs if Hb levels are too high or they increase too
fast. These side effects are basically related to trombo embolisms and vascular prob-
lems [1]. Oftentimes, the relationship between the drug dose and the patient’s response
is complex. To facilitate drug administration, practitioners attempt to use protocols.
Such protocols are developed from average responses to treatment in populations of
patients. Nevertheless, achieving a desired therapeutic response on an individual basis
is complicated by the differences within the population.

The Dialysis Outcomes Quality Initiative of the National Kidney Foundation recom-
mended Hb maintained within the narrow range of 11−12 g/dl [2], although nowadays
the most accepted recommendation by nephrologists and pharmacists is to maintain Hb
within 11 and 13 g/dl [3]. In this study, our target is to maintain Hb levels within 11.5
and 12.5 g/dl. This narrower range allows to increase the sensitivity of alert criteria.

Several attempts at the automation of the EPO delivery have already been reported
based on parametric identification in a Bayesian framework [4], on a fuzzy rule-based
control strategy [5], and on Artificial Neural Networks (ANNs) [6,7]. All these works
are based on approximators or predictors that can obtain the Hb concentration or the
optimal EPO dosage for the next control in order to attain a certain Hb concentration.
This is an interesting approach but it shows a major flaw, namely, this kind of predictors
optimize the output variable a pre-defined number of steps ahead, but it is extremely
difficult to obtain long-term predictors because the models are restrictive in terms of
both the number of considered delays and steps ahead.

What makes RL a suitable technique for this problem is its way of tackling the
problem as achieving long-term stability in patients’ Hb level. This processing is much
closer to medical reasoning than the processing followed by any of the other approaches
proposed previously (Bayesian theory, fuzzy logic, ANNs, etc.). This is because RL
finds a suitable policy, i.e., given a patient in a certain state, RL provides the sequence
of actions that will lead the patient to the best possible state. The goodness of the state is

Use of Reinforcement Learning in Two Real Applications 193

appropriately defined by means of the rewards assigned to the different possible values
of Hb levels.

There are two basic RL approaches: on-policy and off-policy [8]. An on-policy RL
method modifies the starting policy towards the optimal one. In our particular appli-
cation, patients would be probed by possibly non-optimal policies during an episodic
learning process. Construction of such a policy requires sufficiently many occurrences
of all possible state transitions, potentially causing over-dosing or under-dosing. As a
result, on-policy episodic RL tools can discover a useful dosing policy, as a product of a
learning process, which may be however unacceptably long and dangerous in real-time
pharmacotherapy.

In an off-policy approach, the optimal policy can be computed while the agent is
interacting with the environment by means of another arbitrary policy. In this work, we
use the most widely known off-policy RL method (Q-learning). Therefore, our goal is to
stabilize the Hb level within the target range of 11.5− 12.5 g/dl. The Q-learning mech-
anism avoids probing the system by suboptimal dosing policies during long training
episodes for evaluation of the state/action pairs. The proposed learning system deter-
mines the optimal drug dose using reinforcements, which are produced immediately
after state transitions occurring within the patient dynamics during treatment [9,10].

2.2 Data Collection

Patients with secondary anemia due to Chronic Renal Failure (CRF) in periodic hemo-
dyalisis were included in this study. All patients were treated in the University Hos-
pital Dr. Peset (Valencia, Spain). Patients were monitored monthly. We used two sets
of patients: a cohort of 64 patients treated during 2005 and 77 patients analyzed dur-
ing 2006. Several factors for each patient were usually collected in their follow-up:
plasmatic concentration of Hb (g/dl), Hematocrit concentration (%), ferritin (mg/l), ad-
ministration of Intra-Venous Iron (IV Fe) (mg/month), number of administrations of
IV Fe, weekly dosage of EPO beta (International Units, IU), weekly dosage of darbe-
poetin alpha (µg), number of administrations of these ESFs, and other variables that
the Pharmacy Unit staff considered irrelevant for our study, namely, age, weight, sex,
Calcium (mg/l), Phosporus (mg/l), Phosphate (IU), PTH-I (pg/ml), dosage of Calcitriol
and number of administrations of Calcitriol.

2.3 Experimental Setup

In order to accommodate our data to RL algorithms, we considered each monthly test as
an episode. After a preprocessing stage, seven variables were selected to define the state
space: Hb level, ferritin, dosage of IV Fe, dosage of EPO beta, dosage of Darbepoietin
alpha and number of administration of these ESFs.

Percentile analysis as well as expert advice were used to define the most adequate
thresholds for the ranges used to discretize the variables. In particular, the variable Hb
was divided into seven ranges1, ferritin into five ranges, IV Fe dose into four ranges,

1 These seven ranges were the same as those used to select the different values of rewards. These
values were selected by the nephrologists due to their medical relevance.

194 J.D. Martı́n-Guerrero et al.

EPO beta into five ranges, number of administrations of EPO beta into five ranges, and
finally, both Darbepoietin alpha and number of administrations of Darbepoietin alpha
into four ranges.

Nine actions were chosen according to nephrologists: increase/decrease EPO beta
dosage; increase/decrease Darbepoietin alpha dosage; increase/decrease number of ad-
ministrations of EPO beta; increase/decrease number of administrations of Darbepoietin
alpha; maintain dosage and number of administrations with no changes. Since patients
were treated using either one kind of EPO or the other, there was not any action involv-
ing changes in the kind of EPO. Rewards depended on the Hb level, since the final goal
was to maintain patients within 11.5 g/dl and 12.5 g/dl. Rewards were defined according
to experts’ advice, as shown in Eq. (1).

reward =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10, if Hb ∈ [11.5− 12.5]g/dl

0,
if Hb ∈ [10.0− 11.5]g/dl
or Hb ∈ [12.5− 13.0]g/dl

−5,
if Hb ∈ [9.0− 10.0]g/dl
or Hb ∈ [13.0− 14.0]g/dl

−10, otherwise

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1)

We used an ANN, such as the Multilayer Perceptron (MLP), as function approxima-
tor [11]. The inputs to the MLP are given by the variables that define the state and also
by the taken action. The desired output of the MLP is given by Eq. (2). Once the model
is trained, it can approximate the reward associated to any combination of states and
actions. The use of this function approximator has two basic approaches; the first one
is based on swapping the tabular Q-learning algorithm with the function approximator
in all cases; and the second one, is based on swapping only if the action-state combi-
nation has not yet been previously experienced. The latter makes more sense, since it
only uses the approximator when it is impossible to obtain a policy by using tabular
methods.

target = rt+1 + γQt(st+1, at+1) (2)

2.4 Results

Using data from 2005, we obtained a policy that turned out to be considerably better
than that used in the hospital in terms of the percentage of patients that were within the
targeted range of Hb. Evaluation was carried out off-line using historic data. The best
results were obtained using the tabular Q-learning algorithm for already experienced
situations and the function approximator for those cases that had not yet been previ-
ously experienced. In particular, being Nm the number of monitorings and I the best
value of theQ function at the last episode, i.e., the value associated to that action which
guarantees the maximum value of theQ-function (greedy approach), the hospital policy

Use of Reinforcement Learning in Two Real Applications 195

evaluated by the SARSA algorithm showed a value of
∑Nm

i=1 Ih(i) = 2359.7, whereas
the RL policy had a value of

∑Nm

i=1 Iq(i) = 2922.0, which involved an increase of 19%.
Our proposed policy guaranteed that Hb levels of patients were closer to the desired

range of Hb than using the hospital protocol. In particular, analyzing the long-term
results after one year of treatment, there was an increase of 25% in the number of pa-
tients that were within the desired range of Hb or in those ranges that were immediately
next to the desired one. This ensured stable conditions in patients undergoing CRF and
maximized patients’ quality-of-life. Moreover, the proposed policy might involve a con-
siderable economic saving for the hospital. The percentage of patients undergoing CRF
represents between 0.1% and 0.2% of the population. The investment in ESFs of the
Pharmacy Unit (PU) of the hospital analyzed in this study is around e30,000 per year.
This PU has estimated than an optimal policy would save between e100 and e200 per
patient and year, which would involve a rough saving of e1,000,000 for all Valencian
Region2.

The application of the previously obtained policy to the cohort of patients treated
during 2006, showed an improvement in the value of

∑Nm

i=1 I(i) equal to 15%. There-
fore, it involved that a higher percentage of patients were within the desired range of
Hb (or at least, closer to the desired range), when using the RL policy than following
the hospital policy. In particular, there was an increase of 22% in the number of patients
that were within the desired range of Hb at the end of year 2006. It guarantees a better
Quality-of-Life, and it also involves considerable economic savings for the HCS.

Therefore, the achieved results are promising, since they indicate that the RL policy
is robust and generalizable to patients different from those used to obtain the policy. To
end up all the validation process, some measures should still be carried out, e.g., a com-
plete calculation of the economic savings involved (taking into account all the factors,
such, as potential admissions in hospitals, expenses in drugs related to the treatment and
the state of the disease, . . .). It would also be very interesting to analyze the monthly
evolution of the ratio of patients that are within the desired range of Hb; this would help
answer questions like: How long does it take for a certain patient to reach this desired
target? Are they stable?, i.e., once they are within the desired target, what is the proba-
bility to be out of the range again in the future? Is the evolution slow and progressive?
The answers of these questions could be used together with experts’ advice to improve
the definition of the rewards.

3 Optimization of a Marketing Campaign

3.1 Description of the Problem

The latest marketing trends are more concerned about maintaining current customers
and optimizing their behavior than getting new ones. For this reason, relational market-
ing focuses on what a company must do to achieve this objective [12]. The relationships
between a company and its customers follow a sequence of action-response system,

2 Region of Valencia is a Spanish region with approximately 5 millions of inhabitants and an
autonomous government, which manages its own Health Care System.

196 J.D. Martı́n-Guerrero et al.

where the customers can modify their behavior in accordance with the marketing ac-
tions developed by the company.

One way to increase the loyalty of customers is by offering them the opportunity
to obtain some gifts as the result of their purchases from the company. The company
can give virtual credits to anyone who buys certain articles, typically those that the
company is interested in promoting. After a certain number of purchases, the customers
can exchange their virtual credits for the gifts offered by the company.

The problem is to establish the appropriate number of virtual credits for each pro-
moted item and for each individual customer. In accordance with the company policy,
it is expected that the higher the credit assignment, the higher the amount of purchases.
However, the company’s profits are lower since the marketing campaign adds an extra
cost to the company. The goal is to achieve a trade-off by establishing an optimal policy.
We propose the use of RL to solve this task since previous applications have demon-
strated its suitability in this area [13,14], in particular to solve the mailing problem.

The main difference between the mailing problem and the credit assignment problem
is that the action space becomes multi-valued instead of binary. In the mailing problem
only two actions can be considered: to send a catalog or not to send a catalog. In a credit
assignment application, the optimal policy should recommend how many credits should
be assigned to each transaction.

Marketing problems tend to have a very complex characterization of the transactions
that are involved. This highly dimensional attribute requires the implementation of RL
algorithms by means of state aggregators or function regressors, which under certain
conditions may lead to convergence problems [8]. In this work, we propose two differ-
ent approaches. First, the state space is clustered by using a vectorial quantization car-
ried out by algorithms based on the Self-Organizing Map (SOM); this approach enables
us to work with RL tabular methods. Second, an MLP is used to predict the response
of customers when different actions are carried out by the company. This prediction is
then used to obtain an optimal policy.

3.2 Data Collection

Data were collected from a company3 that was interested in designing a campaign to
encourage their clients to buy more of their products. Data involved 1,264,862 transac-
tions, 1,004 different articles, 3,573 customers and 5 (monthly) episodes. This market-
ing campaign was based on assigning virtual credits to customers. That assignment was
carried out manually based on internal criteria.

The information used for this study corresponds to the first five months of the cam-
paign. We have just received an extended data set formed by 41 monthly episodes that
will be used to find more suitable and robust policies. Although a confidentiality agree-
ment prevents a number of details of the campaign from being released, the main char-
acteristics of the campaign can be made public:

1. The company assigned virtual credits to customers according to the items bought
by them. When customers had enough credits, they could exchange their credits for
gifts.

3 The name of the company cannot be made public due to a confidentiality agreement.

Use of Reinforcement Learning in Two Real Applications 197

2. Customers could obtain virtual credits by buying specific items which were in-
dicated as “encouraged”. The company selected these promoted items monthly
(according to internal criteria).

3. Since the assignment of these virtual credits involved a cost to the company, imme-
diate profits decreased as a direct consequence of the campaign.

The credit assignment took place at the end of every episode and was computed by
taking into account how many “encouraged” articles were bought by customers dur-
ing that month. The so-called Life-Time Value (LTV) at time t (reward) for a certain
customer was obtained as follows:

LTV (t) =
∑

i

Pi(t) · Ai(t)−KCVC(t) (3)

where Ai is the amount of type i articles purchased by the customer; Pi is the price of
type i articles; VC is the number of virtual credits assigned to the customer; and KC is
a coefficient that reports the costs incurred by the company due to credits. The aim of
this work is to increase LTV for every customer by using RL as the strategy to achieve
an optimal policy.

Since it was not possible to carry out the improvement of the policy on-line, a batch
method was used. Episodes were repeatedly shown to the RL algorithm until the con-
vergence of the policy was achieved.

3.3 Experimental Setup

Action and State Spaces. The first task to tackle in an RL algorithm is the design of
state and action spaces. This requires an exhaustive analysis of both the clients and their
actions. The vast amount of information stored by the company showed that there were
many features that defined the customer behavior. Specifically, the following features
were included in the study:

1. The identification of the shop that sold the products.
2. The geographical area where the client made the purchase.
3. The date of the purchase transaction.
4. The number of items purchased by the client.
5. Family4.
6. The item identification number.
7. Whether the items were regular items or “encouraged” items.
8. Price of the item purchased.

An initial classical data mining study was carried out to analyze the data. This study
showed that neither geographical nor temporal information were relevant; therefore,
this information was removed from further analyses.

Marketing studies consider that an optimal set of features to profile the future behav-
ior of a customer is given by the so-called RFM variables [15]:

4 Articles were grouped into families. A family was a label which gathered similar products.

198 J.D. Martı́n-Guerrero et al.

– Recency (R): the most recent date when the customer made a transaction (usually
a purchase, but it can also be a refund request, for instance).

– Frequency (F): the number of times the customer made a purchase.
– Monetary (M): the monetary quantity of products purchased by the customer.

It has been confirmed experimentally that the most valuable customers have high fre-
quency and monetary values, and low recency values [15]. Although this set of features
is the most suitable one to define the state space, we avoided using the same informa-
tion in the definition of the state space and in the computation of the long-term reward.
Therefore, the monetary feature was split into two different ones:

– Amount: the number of items purchased in an episode by each customer.
– Average price: the average price of all the purchases in an episode.

In addition, another feature was considered in the state space. Since customers ob-
tained virtual credits by purchasing some items marked as “encouraged”, it made sense
to add a feature that showed how many “encouraged” items were bought by customers.

The action to be taken was the assignment of a certain number of virtual credits
to customers depending on their purchases. Since there was a wide range of credits,
their quantization was required to have a manageable number of possible actions. This
quantization procedure was carried out taking into account the different gift values for
a certain number of credits. The company established 10 categories of gifts according
to their price, and hence, the action space was also divided into 10 categories.

The SOM Approach. A SOM was trained with all the input patterns from the data
collection, and then, the most representative neuron for a particular input vector was
computed. That neuron is usually called Best Matching Unit (BMU), and in our case,
represents the state of the customer. This approach located similar customers in the
same state; i.e., an aggregation of states was obtained. Given an input vector st =
st(R,F,A,A − P,E)5, its BMU was computed. This value was used as an entry
for the Q-table. Therefore, the input patterns actually contained information about the
marketing-oriented features.

An additional advantage of this proposal is that the interpretation of results was quite
straightforward due to the intuitive maps provided by the SOM. Moreover, there was no
need to use function regressors, thereby avoiding the danger of non-convergent policies.

The MLP Approach. The input space was made up of the set of transaction features,
and the output space consisted of the long-term rewards. Moreover, in the prediction
problem, it was necessary to include not only the state features, but also the features of
the actions taken by the company. It was then feasible to predict the Q-values when tak-
ing different actions in the same state. The best MLP model had one hidden layer made
up by eight neurons. This architecture was obtained by a cross-validation procedures,
after testing different architectures. The objectives of the training were computed using
MC methods because they ensured convergence of the regression algorithm.

5 R ≡ recency, F ≡ frequency, A ≡ the amount of items purchased, A−P is the average price,
and E indicates whether or not the products are “encouraged”.

Use of Reinforcement Learning in Two Real Applications 199

�

��

��

��

��

��

��

���

���

���

��

�

�

��

��

��

��

(a) (b)

Fig. 1. Policy followed by the company (a) in terms of the number of assigned credits and im-
provements suggested by the SOM-RL algorithm (b) in terms of the difference of assigned credits
with respect to the company policy. In the company policy map, (a), the darkest area depicts a
high number of credits given to customers; the medium gray area shows intermediate numbers,
and the white area indicates that no credits were given to customers. In the comparison map, (b),
the darkest areas mean that an increase in the credit assignment is recommended by the optimal
policy; medium gray areas mean no modification in the company policy is suggested and the light
gray areas (very small) indicate that a decrease in the credit assignment should be made.

3.4 Results

Since the algorithms used in this work were off-policy, the data had to be arranged
in episodes and the evaluation was carried out off-line. Each episode was made up of
the transactions of each customer in each one of the five temporal (monthly) steps that
appeared in the data set.

SOM Results. Fig. 1 (a) shows that the policy followed by the company was very
deterministic. Three zones are well defined. The darkest area depicts high number of
credits given to customers; the gray area depicts intermediate amounts, and the white
area indicates that no credits were given to customers. This guideline of the company
policy is a disadvantage for the RL algorithms since they need all actions to be taken in
all states. In spite of this lack of exploration, the RL algorithm was able to find a good
enough solution for this problem. In fact, when computing the Q(s, a) function by
means of the SOM approach, several modifications of the actual policy were suggested
as shown in Fig. 1 (b). There are two main parts in this comparison map: the upper-right
and the lower-right areas (in which no modifications were suggested), and the central
area where the optimal policy suggested an increase in the number of credits given to

200 J.D. Martı́n-Guerrero et al.

customers. The former represents well-defined customers (“loyal” customers in the case
of the lower-right area and “negligible” customers for the company in the case of the
upper-right area). The central area represents “average” customers.

MLP Results. The data was split into three data sets: a training data set formed by
66.6% of the patterns to train the network; a validation data set (33.3% of the patterns)
to carry out a cross-validation; and finally, a test data set that consisted of the remaining
33.3% of the patterns, which had not yet been seen by the network. Unbiased models
with good generalization capabilities were obtained in this way. It should be pointed
out that cross-validation procedures were applied to estimated values, not to policies.

Very similar values of the Mean-Square Error (MSE) were obtained in these three
data sets. In particular, errors showed low values, which corresponded to an accurate
regression. Once the MLP was trained, it was used to estimate the optimal policy. The
results achieved with this algorithm were difficult to visualize because the input space
had 11 dimensions.

0
100

200

0

5

10

0

10

20

30

40

Am.

(a)

Price

0
5

10

0

20

40

0

10

20

30

40

Price

(b)

Enc.

0

100

200

0

100

200

0

20

40

Enc.

(c)

Freq.

0
100

200

0
50

100
150

0

10

20

30

40

Am.

(d)

Freq.

0

100

200

0
5

10

0

10

20

30

40

Freq.

(e)

Price

0

100

200

0

20

40

0

10

20

30

40

Am.

(f)

Enc.

Fig. 2. Several plots showing the comparison of the optimal policy and the company policy with
the features of the state space. The gray dots represent the company policy, while the black
dots represent the optimal policy. The xy-plane is defined by sets of two features, while z-axis
represents the number of given credits.

Use of Reinforcement Learning in Two Real Applications 201

�

�

�

�

�

�

�

���
�

(a) (b)

Fig. 3. Q-function in a SOM topology for the optimal policy (a) and for the company policy (b).
The darker the color, the higher the value of the action-value function Qπ(s, a). The RL policy
provides much larger profits than the company policy. The gray-shade bar shows the value of
Qπ(s, a) for the different gray shades.

Fig. 2 shows several plots comparing the optimal policy and the company policy
with the features that characterize states. Note that in Fig. 2 (c) (which shows both
policies versus the characteristics “Frequency” and “Encouraged”), the company pol-
icy assigned virtual credits to those customers who were prone to buying “encour-
aged” articles. The optimal policy suggested that credits should be assigned to cus-
tomers who purchased products more frequently even when these products were not
“encouraged”.

The overall behavior of the optimal policy was more “aggressive” than the company
policy. For instance, in the company policy, actions were spread over the entire action
space, whereas the two main groups in the optimal policy were located at the top and
at the bottom of the action space. Similar states seemed to lead to opposite actions. The
explanation of this behavior might be related to the features used to define the state
space. The fact that opposing actions were recommended in similar states suggests that
these features might be an incomplete state representation.

Fig. 3 shows how the optimal policy helps the company to increase its profits con-
siderably. In those areas in which improvements were suggested, the Q-values for the
optimal policy were four or even five times larger than the Q-values of the company
policy.

202 J.D. Martı́n-Guerrero et al.

0
100

200

0

5

10

−5

0

5

10

15

x 10
4

Am.

(a)

Price

0

5

10

0

20

40

−1

0

1

2

x 10
5

Price

(b)

Enc.

0

100

200

0

100

200

−1

0

1

2

x 10
5

Enc.

(c)

Freq.

0

100

200

0
50

100
150

−5

0

5

10

15

x 10
4

Am.

(d)

Freq.

0

100

200

0

5

10

−1

0

1

2

x 10
5

Freq.

(e)

Price

0

100

200

0

20

40

−5

0

5

10

15

x 10
4

Am.

(f)

Enc.

Fig. 4. Q-function for the MLP approach. Gray dots stand for the profits expected if the com-
pany policy is followed, whereas black dots correspond to the RL policy values. The xy-plane is
defined by sets of two features, whereas z-axis represents the value of the Q-function.

� �� �� �� 	� ��� ��� ���
�

�

�

�

	

��

��

��

��

�	

��

��������������������������

� �� �� �� 	� ��� ��� ���
�

��

��

��

��

��

��

��

	�

��������������������������

��� ���

Fig. 5. Histograms showing relative profit increase when using the RL policy instead of the com-
pany policy. Non-VIP customers are shown in (a) and VIP customers in (b).

Use of Reinforcement Learning in Two Real Applications 203

The results yielded by the MLP approach are shown in Fig. 4. The black dots are
more uniformly distributed than the gray dots, which might be due to the fact that the
optimal policy tried to make customers loyal to the company by ensuring a certain
minimum number of sales. The behavior of the company policy was either excellent
or very poor. The Q-values obtained by the RL policy were not as high as some of the
results obtained by the company policy in some cases. Nonetheless, the RL policy was
less likely to obtain poor results than the company policy.

Fig. 5 shows the relative profit increase following the RL policy instead of the com-
pany policy. VIP customers refer to a selected group of customers that has a special
relationship with the company. An RL policy provided much higher profits than the
company policy when it was evaluated using historic data. Although it is a promising
result, a validation with new data is required to claim that RL can indeed get higher
profits.

4 Conclusions

We have presented a work focused on the application of RL to two real problems. In the
problem of optimization of anemia management, we have found policies to maximize
the ratio of patients that are within a targeted range of Hb. It is remarkable the novelty
of an RL application to Pharmacy, which is a field of knowledge very different to the
typical ones that are related to RL. The proposed approach is completely general and
can be applied to any problem of drug dosage optimization.

Moreover, two different RL approaches (state aggregation by SOM and action-value
function approximation by MLP) in targeted marketing have been developed and bench-
marked. The application of both algorithms has proven to be appropriate for problems
of this kind because promising results have been achieved. The SOM approach is more
straightforward to understand than the MLP approach due to the properties of the SOM
algorithm, which allows an intuitive representation of the results. The results suggest
that the use of SOM could be recommended to improve a marketing campaign. The
MLP regressor is more powerful because the generalization process is more robust than
in the SOM algorithm, but is is more difficult to extract information from the achieved
modeling.

Our ongoing research on both problems is focused on improving and validating the
policies since we have just had new data avaliable for both problems.

References

1. Lynne Peterson, L.: FDA Oncologic Drugs Advisory Committee (ODAC) meeting on the
safety of erythropoietin in oncology. Trends in Medicine, pp. 1–4 (May 2004)

2. National Kidney Foundation, K.D.O.Q.I.: Guidelines for anemia of chronic kidney disease.
NKF K/DOQI Guidelines (2000), http://www.kidney.org

3. Steensma, D., Molina, R., Sloan, J., Nikcevich, D., Schaefer, P., Rowland, K.J., Dentchev,
T., Novotny, P., Tschetter, L., Alberts, S., Hogan, T., Law, A., Loprinzi, C.L.: Phase III study
of two different dosing schedules of erythropoietin in anemic patients with cancer. Journal
of Clinical Oncology 24(7), 1079–1089 (2006)

http://www.kidney.org

204 J.D. Martı́n-Guerrero et al.

4. Bellazzi, R.: Drug delivery optimization through bayesian networks: an application to ery-
thropoietin therapy in uremic anemia. Computers and Biomedical Research 26, 274–293
(1992)

5. Bellazzi, R., Siviero, C., Bellazzi, R.: Mathematical modeling of erythropoietin therapy in
uremic anemia. Does it improve cost-effectiveness? Haematologica 79, 154–164 (1994)

6. Jacobs, A.A., Lada, P., Zurada, J.M., Brier, M.E., Aronoff, G.: Predictors of hematocrit
in hemodialysis patients as determined by artificial neural networks. Journal of American
Nephrology 12, 387A (2001)

7. Martı́n, J.D., Soria, E., Camps, G., Serrano, A., Pérez, J., Jiménez, N.: Use of neural networks
for dosage individualisation of erythropoietin in patients with secondary anemia to chronic
renal failure. Computers in Biology and Medicine 33(4), 361–373 (2003)

8. Sutton, R., Barto, A.: Reinforcement Learning: An Introducion. MIT Press, Cambridge
(1998)

9. Martı́n, J.D., Soria, E., Chorro, V., Climente, M., Jiménez, N.V.: Reinforcement learning for
anemia management in hemodialysis patients treated with erythropoietic stimulating factors.
In: European Conference on Artificial Intelligence 2006, Proceedings of the Workshop Plan-
ning, Learning and Monitoring with uncertainty and dynamic worlds, Riva del Garda, Italy,
pp. 19–24 (2006)

10. Martı́n, J.D., Soria, E., Martı́nez, M., Climente, M., De Diego, T., Jiménez, N.V.: Valida-
tion of a reinforcement learning policy for dosage optimization of erythropoietin. In: Orgun,
M.A., Thornton, J. (eds.) AI 2007. LNCS, vol. 4830, pp. 732–738. Springer, Heidelberg
(2007)

11. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, Upper
Saddle River (1999)

12. Reichheld, F.F.: The loyalty effect: the hidden force behind growth, profits, and lasting value.
Harvard Business School Press, Boston (2001)

13. Abe, N., Verma, N., Schroko, R., Apte, C.: Cross channel optimized marketing by reinforce-
ment learning. In: Proceedings of the KDD, pp. 767–772 (2004)

14. Sun, P.: Constructing Learning Models from Data: The Dynamic Catalog Mailing Problem.
Ph.D thesis, Tsinghua University (2003)

15. Pfeifer, P.E., Carraway, R.L.: Modelling customer relationships as markov chains. Journal of
Interactive Marketing 14(2), 43–55 (2000)

Applications of Reinforcement Learning to
Structured Prediction

Francis Maes, Ludovic Denoyer, and Patrick Gallinari

LIP6 - University Pierre et Marie Curie
104 avenue du President Kennedy, Paris, France

Abstract. Supervised learning is about learning functions given a set
of input and corresponding output examples. A recent trend in this field
is to consider structured outputs such as sequences, trees or graphs.
When predicting such structured data, learning models have to select
solutions within very large discrete spaces. The combinatorial nature of
this problem has recently led to learning models integrating a search
component.

In this paper, we show that Structured Prediction (SP) can be seen
as a sequential decision problem. We introduce SP-MDP: a Markov De-
cision Process based formulation of Structured Prediction. Learning the
optimal policy in SP-MDP is shown to be equivalent as solving the SP
problem. This allows us to apply classical Reinforcement Learning (RL)
algorithms to SP. We present experiments on two tasks. The first, se-
quence labeling, has been extensively studied and allows us to compare
the RL approach with traditional SP methods. The second, tree trans-
formation, is a challenging SP task with numerous large-scale real-world
applications. We show successful results with general RL algorithms on
this task on which traditional SP models fail.

1 Introduction

Supervised Learning focuses on learning a function given a set of input-output
examples. A lot of models have been proposed mainly for continuous output
tasks (i.e. regression) or classification tasks. A recent trend is to consider struc-
tured outputs such as sequences, trees or graphs. Structured Prediction (SP) is
motivated by the amount of applications which are naturally described with such
data. Such applications include prediction of protein structure in bio-informatics,
image restoration, speech processing, handwriting recognition and several nat-
ural language processing tasks such as part-of-speech tagging, named entity
extraction, sentence parsing or automatic translation. For example, in the hand-
writing recognition task, illustrated in figure 1, inputs are sequences of hand-
written characters (e.g. gray-scale bitmaps) and outputs are sequences of labels
identifying recognized characters. Most SP challenges come from the combina-
torial nature of the prediction process i.e. the number of possible outputs is
usually exponential with respect to the size of the input.

Some new task-independent SP models have been proposed during the last
years. These models have shown to perform well on simple SP tasks like sequence

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 205–219, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

206 F. Maes, L. Denoyer, and P. Gallinari

Fig. 1. Two examples of Structured Prediction. Left: sequence labeling, the input X is a
sequence of handwritten characters and the output Y is a sequence of labels identifying
the recognized characters. Right: tree transformation, X is a an HTML tree from the
web and Y is an XML tree with additional semantic information.

labeling but they often suffer from scaling problems on more complex tasks. In
order to treat SP tasks with larger output spaces, a recent idea is to consider
the prediction process as a sequential decision problem. For example, in hand-
writing recognition, one can build the correct output by taking one decision per
character (recognize an ’s’, recognize an ’t’, ...). A more complex example is tree
transformation, where decisions correspond to node creations, displacements or
deletions. In order to construct the output structure, these decisions are per-
formed sequentially. Decisions are interdependent, for example in figure 1 (left),
the decision concerning partially hidden characters can be made easier thanks
to previous easy character-recognition decisions.

In this paper, we investigate the application of classical reinforcement learning
algorithms to SP tasks. Therefore, we introduce a new framework called SP-MDP
which is a formulation of SP based on Markov Decision Processes. We show the
equivalence between learning the optimal policy in SP-MDP and minimizing
the empirical risk of the corresponding SP problem. Thanks to this equivalence,
we can apply general reinforcement learning technics to SP problems. Our ex-
periments focus on the two SP tasks illustrated in figure 1. Sequence labeling
is probably the simplest and most studied SP task. Our experiments show the
competitiveness of general RL algorithms against state-of-the-art SP models on
this task. Tree transformation is a challenging SP task. The specific applications
considered here imply trees containing more than one thousand nodes, very large
description spaces (up to 106 dimensions) and an infinite state space. General
RL algorithms show successful results on several real-world applications where
previous SP methods failed.

The paper is structured as follows. First, we introduce the field of SP and give
an overview of existing methods in section 2. We then describe the SP-MDP
formulation and show the equivalence between learning a policy in SP-MDP
and solving the SP problem in section 3. We demonstrate the interest of the RL
approach, with several experiments on sequence labeling and tree transformation
tasks in section 4.

Applications of Reinforcement Learning to Structured Prediction 207

2 Structured Prediction

In this section, we define Structured Prediction and give an overview of existing
SP methods. We focus on task-independant SP models: those which are not
restricted to a particular data structure.

2.1 Formalism

The aim of SP is to learn a function which maps inputs x ∈ X to outputs y ∈ Yx,
where the outputs are objects which have a structure, such as sequences, trees or
graphs. X is the set of all possible inputs and Yx is the set of candidate outputs
for a given input x. We denote by Y = ∪x∈XYx the full output space.

For learning, the user supplies a set of examples D = {(xi,yi)}i∈[1,n]. These
examples are supposed to be independently and identically sampled from an
unknown distribution DX×Y . In order to evaluate the quality of a prediction, we
use a loss function ∆(ŷ,y∗) which quantifies how bad it is to predict ŷ instead
of y∗. The models introduced in the following are parameterized by a vector
θ ∈ Rd and we denote fθ the prediction function corresponding to parameters
θ. Two problems have to be solved in SP:

• Inference. Given the parameters θ and an input x, the inference consists
in selecting an output ŷ among all candidates Yx. In most SP problems, the
number of candidates is exponential in the size of the input. The predicted
output, denoted ŷ = fθ(x), should have a low loss value ∆(ŷ,y∗).
• Training. Given the set of examples D and the loss function ∆, training is
the process of searching the best parameters θ that minimize a global loss over
the training set. Formally, learning corresponds to minimizing the expected risk
defined as follows:

θ∗ = argmin
θ∈Rd

Ex,y∼DX×Y{∆(fθ(x),y)}

Since the distribution DX×Y is unknown, the expected risk cannot be computed
and the methods usually try to minimize the empirical risk defined over the
training set:

θ∗ = argmin
θ∈Rd

1
N

∑
(x,y∗)∈D

∆(ŷ = fθ(x),y∗)

2.2 Compatibility Based Models

One of the first ideas of SP was to generalize existing classification methods to
structured outputs. Some new methods have been proposed which are based on
a compatibility function F (x,y; θ) that measures how good is the output y given
an input x. The classification function is thus defined as:

fθ(x) = argmax
y∈Yx

F (x,y; θ)

208 F. Maes, L. Denoyer, and P. Gallinari

A common choice is to choose F as a linear function:

F (x,y; θ) =< θ, φ(x,y) >

where < ., . > denotes the scalar product and φ is an input-output joint-
description function. Such a function jointly describes an input x and a cor-
responding candidate output y as a feature vector in Rd. Compatibility-based
models differ in the meaning which is associated to the compatibility function
and in the way to learn the θ parameters.

The Structured Perceptron [1] is a generalization of the classical Perceptron
which was first applied to natural language parsing. Learning is performed by
simulating inference, and correcting the weight vector each time a wrong output
is predicted. No special meaning is given to the compatibility function except
the requirement that the correct output should have higher scores than wrong
outputs.

Conditional Random Fields (CRFs) [2] use a log-linear probability function
to model the conditional probability of an output y given an input x. CRFs are
graphical models where Markov assumptions are used in order to make inference
tractable. This allows to express the probability of an output as a product over
output sub-structures.

Several methods extending the ideas of Support Vector Machines to SP have
been proposed. SVM for Interdependent and Structured Output spaces (SVM-
ISO, also known as SVMstruct) [3] is a natural generalization of maximum margin
classification to structured outputs. Maximum Margin Markov Network (M3N)
[4] is a generalization of probabilistic graphical models which is trained with a
discriminant criterion. Both methods try to find parameters θ that lead to large
margins: i.e. large score differences between correct and wrong outputs. They
differ in the way constraints are defined and handled for the optimization.

All compatibility-based models assume that inference can be solved efficiently.
This optimization step which is involved in both learning and inference, has
mostly been tackled with dynamic programming techniques. This has two major
drawbacks. First, dynamic programming requires strong independence assump-
tions which are often unrealistic for real-world data. For example, in sequence
labeling, it is often assumed that a label only interacts with the previous and
next labels. Second, even with such independence assumptions, dynamic pro-
gramming algorithms may have a prohibitive complexity. For example, when
predicting trees, the best dynamic programming algorithms have a cubic com-
plexity in the number of leaf nodes. This limits the use of such methods to
small trees, e.g. less than 50 nodes. This family of methods is unable to deal
with large-scale collections and complicated structured output and are limited
to simple tasks like sequence labeling for example.

2.3 Incremental Models

Recently, a new idea has emerged from the field of SP. Instead of modeling a
compatibility function and then solving a complex optimization problem, it is

Applications of Reinforcement Learning to Structured Prediction 209

possible to directly learn the prediction process. Instead of modeling what a good
prediction looks like the Incremental models directly model how to build the good
prediction. This simple idea thus suggests to integrate learning and searching into
a sequential prediction process. This process starts with an empty initial partial
output. Each decision correspond to an elementary modification of the output
being predicted. States contain partial outputs and final states contain complete
outputs.

Incremental Parsing [5] is one of the first models using the idea of incremen-
tal prediction. This model was introduced in the context of natural language
parsing, where inputs are sequences of words and outputs are parse trees. In-
cremental Parsing is built around a Perceptron which assigns ranking scores to
partial outputs. The inference is performed greedily by making decisions that
maximize the immediate ranking score. Learning is performed by repeating the
following process: run the inference procedure until a wrong decision happens,
stop inference and make an elementary correction of the Perceptron.

Incremental prediction was popularized by LaSO [6] which is probably the
first general Incremental SP model. LaSO relies on a beam-search procedure.
The selection of partial outputs in the beam-search is computed by using a
Perceptron. LaSO assumes that the whole path leading to the correct output is
known for all examples. Learning repeats the following steps until convergence:
run the inference procedure until the correct path leaves the beam, make an
elementary correction of the Perceptron, re-insert the correct path in the beam
and continue.

Searn [7] is another general Incremental SP model developed later. In Searn,
the decision maker is modelled by a classifier of any type (e.g. Support Vector
Machines or Decision Trees). Searn assumes that for each learning example, we
know an optimal decision maker. This decision maker knows the best decision
to perform for all states of the prediction space. Searn uses an iterative batch-
learning approach. At each Searn iteration, a mixture of the optimal decision
maker and the learnt decision maker is used to perform inference on all learning
examples. For each visited state, one classification example is created. At the end
of the iteration, a new classifier is learnt on the basis of these new classification
examples. This is repeated until convergence. Searn has shown to be efficient on
numerous task and is considered as a general-purpose state-of-the-art SP model.

3 Structured Prediction with Markov Decision Processes

In this section, we introduce a new formulation of SP that is based on Markov
Decision Processes. SP-MDPs are MDPs that model the inference process of a
structured prediction. The main contribution of this paper is to show that learn-
ing the optimal policy in an SP-MDP is equivalent to solving the corresponding
SP problem, i.e. minimizing the empirical risk.

This original formulation allows to apply general-purpose Reinforcement
Learning algorithms to SP tasks. In section 4, we show the competitiveness of
such general algorithms against SP state-of-the-art methods. Contrary to LaSO

210 F. Maes, L. Denoyer, and P. Gallinari

Fig. 2. Handwritten recognition SP-MDP. Circles are states and links are transitions.
Each state contains the input and a partial output. Here, the input is a sequence
of three black-and-white bitmaps representing handwritten digits. Partial outputs are
partially recognized sequences of digits. The bottom double circled states are final
states containing complete outputs.

and Searn, our approach of SP does not rely on any additional assumption such
as the availability of optimal trajectories or the availability of the optimal policy.

3.1 SP Markov Decision Process

We adopt the formalism of deterministic MDPs (S,A, T , r) where S is the state-
space, A is the set of possible actions, T : S ×A → S is the transition function
between states and r : S ×A → R is the reward function.

A SP-MDP is a deterministic MDP which models inference for a given SP
task. SP-MDPs are illustrated in figure 2 and defined formally below:

• States. Each state of a SP-MDP contains both an input x and a partial
output ȳ. Let Ȳ be the set of all possible partial outputs. The set of states of
a SP-MDP is then S = X × Ȳ. There is one initial state per possible input
x: sinitial(x) = (x, ε) where ε is the initial empty solution. A set of examples
D = {(xi,yi)}i∈[1,n] can thus be mapped to a set of corresponding SP-MDP
initial states. Final states contain complete outputs which can be returned to
the user.
• Actions. Actions of SP-MDP concern elementary modifications of the partial
output ȳ. Those elementary modifications are specific to the SP problem. For
example, in handwriting recognition, elementary modifications add a single label
prediction to the current partial output. See section 4 for other examples of such
elementary modifications. LetM(x, ȳ) be the set of modifications available given
the input x and the partial output ȳ. The set As ⊂ A of actions available in
state s is defined as follows:

As=(x,ȳ) = M(x, ȳ)

Applications of Reinforcement Learning to Structured Prediction 211

• Transitions. SP-MDP transitions are deterministic and replace the current
partial output by the transformed partial output. Transitions do not change the
current input:

T ((x, ȳ), a) = (x, a(ȳ))

where a(ȳ) denotes the modified partial output.
• Rewards. In SP, the aim is to predict outputs which are as similar as possible
to the correct outputs. Formally, we want to minimize the expectation of the SP
loss function ∆. The reward function of an SP-MDP, which is discussed in next
part, is closely related to ∆:

r(s = (x, ȳ), a) =

{
−∆(a(ȳ),y∗), if a leads to a final state
0, for all other states

Note that the correct output y∗ is required to compute this reward function.

3.2 Learning a SP Policy

In this part, we discuss the reward function of SP-MDPs and show that maximiz-
ing the expectation of perceived reward is equivalent to minimizing the empirical
risk of SP. Remember that, in order to learn, we have access to a database of
examples: inputs with their associated correct outputs. Since the computation
of the reward requires the correct outputs, the rewards are only known for states
that correspond to training examples. As illustrated by figure 3, we thus distin-
guish two parts of the state-space: the finite training subset and the remaining
state-space.

The fact that the reward function is only known in a small subset of the state-
space is the main particularity of SP-MDPs, when compared to usual sequential

Fig. 3. This figure illustrates a whole SP-MDP. The big circle denotes states that
correspond to training SP examples: those where the reward function is known. For all
states outside this circle, the reward function is unknown. More than a way to cope
with the curse of dimensionality, we use function approximation in order to obtain
policies able to generalize on the whole SP-MDP given only a small training subset.

212 F. Maes, L. Denoyer, and P. Gallinari

decision problems. The partial observability of the reward function leads us to
the following observations. First, policy learning algorithms can only be applied
to the training subset of the SP-MDP. Second, we are looking for policies with
generalization capabilities. The knowledge acquired in the training subset should
be applicable to the whole space, in order to make predictions on new inputs.

In order to cope with large state-spaces and with the curse of dimensionality,
RL algorithms using function approximation have been developed. We here focus
on these algorithms for another reason: function approximation allows to learn
the policy on a subset of the MDP and then to generalize on the whole MDP.

Approximated RL algorithms learn parameterized policies πθ where θ ∈ Rd

is the vector of parameters. The aim is to find a policy π∗θ that maximizes the
expectation of cumulative reward, given an initial state distribution D0:

π∗θ = argmax
θ

Es0∼D0{R(πθ, s0)}

where the cumulative reward R(π, s0) is the sum of rewards perceived when
following π starting from s0 :

∑T
t=0 r(st, at).

We now show that finding the optimal policy in a SP-MDP is equivalent to
minimizing the empirical risk (see part 2.1) of the SP problem. The key is that
the cumulative reward of one episode in SP-MDP is the negative loss of the
predicted output:

R(πθ, s0) = r(s0, a0) + · · ·+ r(sT−1, aT−1) + r(sT , aT)
= 0 + · · ·+ 0−∆(a(ȳ),y∗)
= −∆(ȳ = fθ(x),y∗)

Let us consider the distribution DD
0 which uniformly picks examples from D

to build initial states sinitial(x). When training a RL algorithm with the DD
0

initial states distribution, we are looking for the optimal policy:

π∗θ = argmax
θ∈Rd

Esinitial(x)∼DD
0
{R(πθ, s0)}

= argmin
θ∈Rd

Esinitial(x)∼DD
0
{∆(ȳ = fθ(x),y∗)}

= argmin
θ∈Rd

1
N

∑
(x,y∗)∈D

∆(ŷ = fθ(x),y∗)

The optimal policy with the initial state distribution DD
0 is thus the policy

which minimizes the empirical risk. This equivalence enables the use of general
RL algorithms with function approximation like Sarsa, QLearning, Monte Carlo
Control or TD(λ) [8].

3.3 Representations

In order to use function approximation, we need an action-description function
φ : S × A → Rd. This function describes state-action pairs with a set of d

Applications of Reinforcement Learning to Structured Prediction 213

feature-values. A feature can describe any joint aspect of the action and the
current state. In the experiments described in section 4, we use large sparse
feature spaces. Typically, the dimensionality d ranges from 103 to 106. In order
to build features, we use feature-templates and feature-generators.

Consider for example the handwriting recognition task, where input characters
are black-and-white bitmaps and actions concern single label predictions. In such
a task, we want to have one feature per pixel and per label. We then introduce
for example the following feature-template:

fx,y,l(s, a) =

{
1, if (the pixel (x,y) is black) ∧ (the predicted label is l)
0, otherwise

In order to describe a state-action pair, we use a feature-generator function
which enumerates all the features that follow the feature-template and which are
non-null. One example of such automatically generated feature is given below:

f3,7,′S′(s, a) =

{
1, if (the pixel (3,7) is black) ∧ (a = ’S’)
0, otherwise

If we consider 10 × 10 black-and-white pixels and 26 possible labels, there are
d = 2600 distinct features. However, for a given state-action pair, all the features
corresponding to other labels than the selected one and those corresponding to
white pixels are null. This leads to a sparse representation of less than 100
non-null features. In practice, sparsity allows for an efficient implementation
where only the non-null features are taken into account. In our experiments,
we use one to ten manually defined task-dependent feature-templates. This is
enough to automatically generate up to millions of distinct features. Contrary
to compatibility-based models which make decomposability assumptions on the
description function (see part 2.2), the SP-MDP approach allows to include any
long-term dependency in the description function.

Sparse high-dimensional representations were introduced in the context of
natural language processing [9] and have good practical properties: they are fast
to compute and allow the use of simple, but powerful, linear learning machines.

4 Experiments

In this section, we describe several experiments performed with the SP-MDP ap-
proach on two SP tasks: sequence labeling and tree transformation. We introduce
two main results in this section. Firstly, with the classical SP task of sequence
labeling, we show the competitiveness of RL-based algorithms in comparison to
state-of-art SP methods. Secondly, with the tree transformation task, we give
a successful example of the capability of general RL algorithms to treat very
large-scale SP tasks. Indeed, tree transformation deals with large trees (thousand
nodes), complex transformations (structure and text processing, node creations,
deletions and displacements) and very high dimensional learning (more than one

214 F. Maes, L. Denoyer, and P. Gallinari

million dimensions). Up to our knowledge, SP-MDP is the only existing model
able to handle this task yet. Traditional SP methods fail on this task, either due
to their restrictive assumptions or due to their excessive complexity.

4.1 Sequence Labeling

Sequence labeling amounts at predicting a label sequence y = (y1, . . . , yT) given
an observation sequence x = (x1, . . . , xT). Each label yt corresponds to the
observation xt and belongs to the set of possible labels L. Sequence labeling has
various applications such as handwriting recognition, information extraction,
named entity extractions or sentence chunking.

We now detail the initial outputs, the actions and the loss function which
define the sequence labeling SP-MDP. In order to represent partial outputs, we
introduce a particular label ⊥ which denotes variables yt which have not been
labeled yet.

• Initial Outputs. The initial partial outputs in sequence labeling are sequences
where no labels have been decided yet. An initial output ε can thus be written
ε = (⊥,⊥, . . . ,⊥).
•Actions. Actions in sequence labeling correspond to single label prediction. We
have compared two sets of actions: Left-to-right labeling and Order-free labeling.
In the former, the first label y1 is decided at the first step, the second label y2
at the second step and so forth. At each step, there are card(L) possible actions
which correspond to all possible labels for the current element. In order-free
labeling, any unlabeled element can be labeled at any time (as in figure 2). This
allows the system to first perform easy decisions (e.g. recognize easy letters) in
order to gain more context for harder decisions (e.g. recognize a partially hidden
letters). More details about this approach are provided in [10].
• Loss function. In order to evaluate the quality of a particular labeling, we
use the Hamming Loss∆. This loss function simply returns the number of wrong
predicted elements: ∆(ŷ,y∗) = card({i ∈ [1, T], ŷi �= y∗i }).
• Datasets. We performed our experiments on three classical sequence labeling
datasets:

– Spanish Named Entity Recognition (NER). This dataset, introduced
in the CoNLL 2002 shared task1, is made of spanish sentences where the aim
is to find persons, locations and organisms names (there are 9 distinct labels
in L). We used two train/test splits NER-large (8,324 training sentences)
and NER-small (300 training sentences), as in [7] and [3]. Features include
the words, the prefixes and suffixes of the words in a window of +/- 2 words.

– Chunk. This dataset put forward by [11] and introduced in the CoNLL-
2000 shared task2 is composed of sections of the Wall Street Journal corpus.
The aim is to split sentences into non-overlapping nominal groups. There are

1 http://www.cnts.ua.ac.be/conll2002/ner/
2 http://www.cnts.ua.ac.be/conll2000/chunking/

Applications of Reinforcement Learning to Structured Prediction 215

three labels (BIO encoding): Begin of a new group, Inside a group, Outside a
group. Input features include the words, prefixes, suffixes and part-of-speech
of surrounding word.

– HandWritten. This corpus was created for handwritting recognition and
was introduced by [12]. It includes 6,600 sequences of handwritten charac-
ters corresponding to 6,600 words collected from 150 subjects. Each word is
composed of letters, which are 8 × 16 pixels images, rasterized into a binary
representation. As in [7], we used two variants of the set: HandWritten-small
(10% words for training) and HandWritten-large (90% words for training).
Letters are described using one feature per pixel.

Table 1. Top: percentage of correctly predicted labels on the testing set per dataset and
model. Bottom: training times of each model with a traditional desktop machine. On
some datasets, denoted by −, SVMstruct required too much memory to be applicable.

Left To Right Order Free Non-incremental
Sarsa RankingRL Searn Sarsa RankingRL CRF SVMstruct

NER-small 91.90 93.67 93.8 91.28 93.35 91.86 93.45
NER-large 96.31 96.94 96.3 96.32 96.75 96.96 -

HandWritten-small 68.41 74.01 64.1 70.63 73.57 66.86 76.94
HandWritten-large 80.33 83.80 73.5 79.59 84.08 75.45 -

Chunk 96.08 96.22 95.0 96.17 96.54 96.71 -
NER-large ≈ 35min ≈ 25min ≈ 6h ≈ 11h ≈ 8h ≈ 8h > 3 days

HandWritten-large ≈ 15min ≈ 12min ≈ 3h ≈ 6h ≈ 4h ≈ 2h > 3 days

• Models. Experiments have been performed with the left-to-right and order-
free models combined with two algorithms: an approximated Sarsa(0) algorithm
and the RankingRL algorithm proposed in [10]. Briefly, instead of learning an
action-value which is the expectation of future discounted rewards, this algo-
rithm learns to rank actions directly: only the order of the learnt action-scores
matters. In all cases, we use ε-greedy sampling, where ε decreases exponentially
with the number of learning iterations. The discount and learning rate param-
eters have been tuned manually. We compare the RL-based methods with two
non-incremental state-of-the-art sequence labeling models: Conditional Random
Fields3 and SVMstruct 4 (see part 2.2). We also compare with an existing Incre-
mental SP method: Searn5 (see part 2.3).
• Results. The results of our experiments are given in table 1. On all datasets,
the RL based methods are competitive with state-of-the-art sequence labeling
methods which demonstrates clearly the interest of our approach. order-free
and left-to-right models give similar results on these experiments; see [10] for a
discussion on these variants. Furthermore, for comparable performance, we have
significantly lower training times than those of the non-Incremental models. It
3 FlexCRFs implementation: http://flexcrfs.sourceforge.net.
4 SVMstruct implementation: http://svmlight.joachims.org/svm struct.html
5 Searn implementation: http://searn.hal3.name

216 F. Maes, L. Denoyer, and P. Gallinari

should also be noted, that inference in incremental model is several orders faster,
since it simply consists in greedily executing the learnt policy (instead of solving
a global optimization problem). These low training and inference times, allow
us to consider much harder tasks than the simple sequence labeling, such as the
tree transformation task described below.

4.2 Tree Transformation

We consider here a tree transformation task where both the inputs and outputs
are ordered labeled trees. The applications we present deal with semi-structured
textual documents. They consist in converting weakly structured (flat text or
HTML) documents into highly structured XML documents. The main challenges
of this tree transformation task come from the size of the documents, the com-
plexity of the transformations and the huge number of training examples.

In order to perform tree transformation, we represent the input trees as a
sequence of in-context leaves: x = (x1, . . . , xT). Each leaf xi is a feature vector
describing the leaf textual content and the context of the leaf (e.g. parent labels
and sibling labels).

• Initial Outputs. The initial outputs are composed of a single root node.
• Actions. The key idea of our SP-MDP is that one leaf xt is processed per
time step t. Processing a leaf means adding its textual content somewhere into
the partial output tree. Either the textual content can be added into an exist-
ing node, or new nodes can be created to store the textual content. An action
consists in two steps: first it selects an internal node of the partial output tree;
then it creates new nodes from this location until a leaf where the textual con-
tent is added. This leads to a very large action space which is determined by a
simple preprocessing of the examples dataset (see [13] and [14]). We furthermore
consider a SKIP action which allows to ignore the current textual content.
• Loss function. In order to evaluate the quality of an output, we used three
tree-similarity functions. Fcontent measures the proportion of correctly labeled
leaves. Fpath measures the proportion of correctly recovered paths. A path is a
sequence of labels from the root node until a leaf node. Fstructure measures the
proportion of correctly recovered subtrees. The latter is very strict and decreases
quickly with only a few errors. For a single labeling error in a leaf, Fstructure

typically equals to ≈ 80%. See [13] for more details. The loss function used in
learning is the negative Fstructure score between the predicted and the correct
output.
• Datasets. We used four large-scale real-world datasets and one small dataset:

– INEX IEEE [15]. The INEX IEEE corpus is composed of 12017 scientific
articles in XML format, coming from 18 different journals. The documents
are given in two versions: a flat segmented version and the XML version.
The tree transformation task aims at recovering the XML structure using
only the text segments as input.

– Mixed Movies [15]. The second corpus is made of more than 13000 movie
descriptions available in three versions: two mixed different XHTML versions

Applications of Reinforcement Learning to Structured Prediction 217

and one XML version. This corresponds to a scenario where two different
websites have to be mapped onto a predefined mediated schema. The trans-
formation includes node suppression and some node displacements.

– Wikipedia [16]. This corpus is composed of 12,000 wikipedia pages. For
each page, we have one XML representation dedicated to wiki-text and the
HTML code. The aim is to use the low-level information available in the
HTML version, to predict an high-level representation.

– RealEstate.6 This corpus, proposed by Anhai Doan is made of 2,367 data-
oriented XML documents. The documents are expressed in two different
XML formats. The aim is to learn the transformation from the format to
the other.

– Shakespeare7 [17]. This corpus is composed of 60 Shakespearean scenes.
These scenes are small trees, with an average length of 85 leaf nodes and 20
internal nodes over 7 distinct tags.

• Models. Each corpus is split into two parts: 50% for training and 50% for
testing. Our model is the approximated-Sarsa(0) algorithm applied to the SP-
MDP described above. We only have one baseline on two datasets because most
existing SP methods do not scale with our large datasets. The baseline itself does
not scale on our three large datasets. The model PCFG+ME [17] can be seen as
a compatibility based model for the tree transformation problem. It models the
probability of outputs by using probabilistic context free grammars (PCFG) and
maximum-entropy (ME) classifiers. Inference is then performed with a dynamic-
programming algorithm which has a cubic complexity in the number of input
leaves. LaSO cannot be applied because we do not have access to correct paths
for learning examples (see part 2.3). Searn cannot be applied because we do not
have access to an optimal decision maker. Indeed, given a partial output tree and
the target output tree, the optimal decisions are those which minimize the tree-
edit distance between both trees. The best algorithms that compute tree-edit
distances have at least a cubic complexity in the number of nodes. Due to the
large size of our trees, these computations are not tractable so that we cannot
compute the optimal decisions.
•Results. The results of our experiments are given in table 2. All Fcontent scores
are greater than 75 % while the more difficult Fstructure is still greater than ≈
60 %. These scores are encouraging when considering the intrinsic difficulty of
the tree transformation tasks. With INEX IEEE for example, the only hints for
predicting one label among more than 100 labels come from the textual content
of the input document (length, case, first and last words, ...).

On the small datasets, the scores of Sarsa are slightly lower than those of
the PCFG+ME baseline. This may due to the fact that PCFG+ME performs
a global optimization using dynamic programming whereas Sarsa performs a
greedy inference of the output tree. Greedy inference slightly degrades perfor-
mance but it brings speed (most of document are inferred in less than one second)

6 http://www.cs.wisc.edu/ anhai/
7 http://metalab.unc.edu/bosak/xml/eg/shaks200.zip

218 F. Maes, L. Denoyer, and P. Gallinari

Table 2. This table summarizes our experiments. From left to right: the dataset,
dataset statistics (the number of documents, the average number of nodes in correct
output documents and the number of distinct labels in output documents), the model
and the three average similarity scores between predicted and correct outputs on the
test set (Fcontent, Fpath and Fstructure).

Dataset Size AvNodes NumLabels Model Fcontent Fpath Fstructure

INEX IEEE
Flat → XML 12,017 ≈ 700 139 Sarsa 75.8 % 74.4 % 67.5 %
Mixed Movies

HTML → XML 13,038 ≈ 100 40 Sarsa 79.2 % 77.8 % 64.5 %
Wikipedia

HTML → XML 12,000 ≈ 200 256 Sarsa 80.2 % 74.3 % 65.6 %
RealEstate 2,367 ≈ 34 37 Sarsa 99.9 % 99.9 % 99.9 %

XML→ XML PCFG+ME 99.9 % 7 % 49.8 %
Shakespeare 60 ≈ 105 7 Sarsa 94.4 % 93.2 % 87.5 %
Flat → XML PCFG+ME 98.7 % 97% 94.7 %

and scalability. Finally, an interesting result is that with a general reinforcement
learning, we are able to solve a problem where previous SP methods failed.

5 Conclusion

In this paper, we introduced the structured prediction problem and gave an
overview of some well-known methods for solving it. We introduced the SP-MDP
formulation of structured prediction, which allows to apply general reinforce-
ment learning algorithms to sequence, tree or graph prediction problems. Our
experiments show that these general RL technics are often competitive against
specialized SP algorithms. Furthermore, our approach requires less assumptions
than the previous SP approaches, which allows us to deal with a complex and
large scale tree transformation task.

From the point of view of reinforcement learning, our problems are original
on a number of aspects: the reward is only known for a subset of the space,
the MDPs are discrete and very-large and we put a special emphasis on the
generalization capabilities of the learnt policies. Given this unusual setting, we
believe that the explicit bridge between SP and reinforcement learning may lead
both domains to cross-fertilize and mutually reinforce each other.

References

1. Collins, M.: Discriminative training methods for hidden markov models: Theory
and experiments with perceptron algorithms. In: EMNLP (2002)

2. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: ICML 2001 (2001)

3. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine
learning for interdependent and structured output spaces. In: ICML 2004 (2004)

Applications of Reinforcement Learning to Structured Prediction 219

4. Taskar, B., Guestrin, C., Koller, D.: Max-margin markov networks. In: NIPS (2003)
5. Collins, M., Roark, B.: Incremental parsing with the perceptron algorithm. In: ACL

2004, Barcelona, Spain, pp. 111–118 (July, 2004)
6. Daumé III, H., Marcu, D.: Learning as search optimization: Approximate large

margin methods for structured prediction. In: ICML, Bonn, Germany (2005)
7. Daumé III, H., Langford, J., Marcu, D.: Search-based structured prediction (2006)
8. Sutton, R., Barto, A.: Reinforcement learning: an introduction. MIT Press, Cam-

bridge (1998)
9. Berger, A., Della Pietra, S., Della Pietra, V.: A maximum entropy approach to

natural language processing. In: Computational Linguistics (1996)
10. Maes, F., Denoyer, L., Gallinari, P.: Sequence labelling with reinforcement learning

and ranking algorithms. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R.,
Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS, vol. 4701, pp.
648–657. Springer, Heidelberg (2007)

11. Ramshaw, L., Marcus, M.: Text chunking using transformation-based learning. In:
Yarovsky, D., Church, K. (eds.) Proceedings of the Third Workshop on Very Large
Corpora, Somerset, New Jersey, ACL, pp. 82–94 (1995)

12. Kassel, R.H.: A comparison of approaches to on-line handwritten character recog-
nition. Ph.D thesis, Cambridge, MA, USA (1995)

13. Maes, F., Denoyer, L., Gallinari, P.: Xml structure mapping application to the
pascal/inex 2006 xml document mining track. In: INEX, Dagstuhl, Germany (2007)

14. Maes, F., Denoyer, L., Gallinari, P.: Apprentissage de conversions de documents
semi-structures a partir d’exemples. In: CORIA, Tregastel, France (2008)

15. Denoyer, L., Gallinari, P.: Report on the xml mining track at inex 2005 and inex
2006. SIGIR Forum, 79–90 (2007)

16. Denoyer, L., Gallinari, P.: The wikipedia xml corpus. SIGIR Forum (2006)
17. Chidlovskii, B., Fuselier, J.: A probabilistic learning method for xml annotation of

documents. In: IJCAI (2005)

Policy Learning – A Unified Perspective with
Applications in Robotics

Jan Peters1,2, Jens Kober1, and Duy Nguyen-Tuong1

1 Max-Planck Institute for Biological Cybernetics,
Spemannstr. 32, 72074 Tübingen

2 University of Southern California,
Los Angeles, CA 90089, USA

{jrpeters,kober,duy}@tuebingen.mpg.de
http://kyb.mpg.de/∼jrpeters

Abstract. Policy Learning approaches are among the best suited methods for
high-dimensional, continuous control systems such as anthropomorphic robot
arms and humanoid robots. In this paper, we show two contributions: firstly, we
show a unified perspective which allows us to derive several policy learning al-
gorithms from a common point of view, i.e, policy gradient algorithms, natural-
gradient algorithms and EM-like policy learning. Secondly, we present several
applications to both robot motor primitive learning as well as to robot control
in task space. Results both from simulation and several different real robots are
shown.

1 Introduction

In order to ever leave the well-structured environments of factory floors and research
labs, future robots will require the ability to aquire novel behaviors, motor skills and
control policies as well as to improve existing ones. Reinforcement learning is probably
the most general framework in which such robot learning problems can be phrased.
However, most of the methods proposed in the reinforcement learning community to
date are not applicable to robotics as they do not scale beyond robots with more than
one to three degrees of freedom. Policy learning methods are a notable exception to
this statement. Starting with the pioneering work of Gullapali, Franklin and Benbrahim
[4, 8] in the early 1990s, these methods have been applied to a variety of robot learning
problems ranging from simple control tasks (e.g., balancing a ball-on a beam [3], and
pole-balancing [11]) to complex learning tasks involving many degrees of freedom such
as learning of complex motor skills [8, 15, 20] and locomotion [6, 7, 10, 13, 16, 22, 24].

In this paper, we expand previous work on policy learning towards the direction
of a unified framework for policy learning. For doing so, we discuss upper and lower
bounds on policy improvements. From the lower bound, we derive a cost function which
allows us to derive policy gradient approaches, natural policy gradient approaches as
well as EM-like policy learning methods. Furthermore, we show several applications in
the context of robot skill learning. These applications include both learning task-space
control with reinforcement learning as well as motor primitive learning. Results of both
real robots and simulation are being shown.

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 220–228, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Policy Learning – A Unified Perspective with Applications in Robotics 221

2 Policy Learning Approaches

As outlined before, we need two different styles of policy learning algorithms, i.e.,
methods for long-term reward optimization and methods for immediate improvement.
We can unify this goal by stating a cost function

J(θ) =
∫

T

pθ (τ) r (τ) dτ , (1)

where τ denotes a path, e.g., τ = [x1:n,u1:n] with states x1:n and actions u1:n ,
r (τ) denotes the reward along the path, e.g., r (τ) =

∑n
t=1 γ

trt and pθ (dτ) denotes
the path probability density pθ (dτ) = p (x1)

∏n−1
t=1 p (xt+1|xt,ut)π(ut|xt; θ) with a

first-state distribution p (x1), a state transition p (xt+1|xt,ut) and a policy π(ut|xt; θ).
Note, that pθ (τ) r (τ) is an improper distribution, i.e., does not integrate to 1. The
policy π(ut|xt; θ) is the function which we intend to learn by optimizing its param-
eters θ ∈ RN . Many policy learning algorithms have started optimize this cost func-
tion, including policy gradient methods [1], actor-critic methods [14, 23], the Natural
Actor-Critic [19, 20, 21] and Reward-Weighted Regression [18]. In the remainder of
this section, we will sketch a unified approach to policy optimization which allows the
derivation of all of the methods above from the variation of a single cost function. This
section might appear rather abstract in comparison to the rest of the paper; however, it
contains major novelties as it allows a coherent treatment of many previous and future
approaches.

2.1 Bounds for Policy Updates

In this section, we will look at two problems in policy learning, i.e., an upper bound
and a lower bound on policy improvements. The upper bound outlines why a greedy
operator is not a useful solution while the lower bound will be used to derive useful
policy updates.

Upper Bound on Policy Improvements. In the stochastic programming community,
it is well-known that the greedy approach to policy optimization suffers from the major
drawback that it can return only a biassed solution. This drawback can be formalized
straighforwardly by showing that if we optimize J(θ) and approximate it by samples,
e.g., by ĴS(θ) =

∑S
s=1 pθ (τ s) r (τ s) ≈ J(θ), we obtain the fundamental relationship

E{maxθ ĴS(θ)} ≥ maxθ E{ĴS(θ)}, (2)

which can be shown straightforwardly by first realizing the that the maximum is always
larger than any member of a sample. Thus, a subsequent expectation will not change
this fact nor the subsequent optimization of the lower bound. Thus, a policy which is
optimized by doing a greedy step in parameter space is guaranteed to be biased in the
presence of errors with a bias of bS(θ) = E{maxθ ĴS(θ)} − maxθ E{ĴS(θ)} ≥ 0.
However, we can also show that the bias decreases over the number of samples, i.e.,
bS(θ) ≥ bS+1(θ), and converges to zero for infinite samples, i.e., limS→∞ bS(θ) = 0
[17]. This optimization bias illustrates the deficiencies of the greedy operator: for finite
data any policy update is problematic and can result into unstable learning processes
with oscillations, divergence, etc as frequently observed in the reinforcement learning
community [1, 2].

222 J. Peters, J. Kober, and D. Nguyen-Tuong

Lower Bound on Policy Improvements. In other branches of machine learning, the
focus has been on lower bounds, e.g., in Expectation-Maximization (EM) algorithms.
The reasons for this preference apply in policy learning: if the lower bound also be-
comes an equality for the sampling policy, we can guarantee that the policy will be im-
proved. Surprisingly, the lower bounds in supervised learning can be transferred with
ease. For doing so, we look at the scenario (suggested in [5]) that we have a policy
θ′ and intend to match the path distribution generated by this policy to the success
weighted path distribution, then we intend to minimize the distance between both dis-
tributions, i.e., D (pθ′ (τ) ||pθ (τ) r (τ)). Surprisingly, this results into a lower bound
using Jensen’s inequality and the convexity of the logarithm function. This results into

log J(θ′) = log
∫
pθ (τ)
pθ (τ)

pθ′ (τ) r (τ) dτ , (3)

≥
∫
pθ (τ) r (τ) log

pθ′ (τ)
pθ (τ)

dτ ∝ −D (pθ′ (τ) ||pθ (τ) r (τ)) , (4)

where D (pθ′ (τ) ||pθ (τ)) =
∫
pθ (τ) log(pθ (τ) /pθ′ (τ))dτ is the Kullback-Leibler

divergence, i.e., a distance measure for probability distributions. With other words, we
have the lower bound J(θ′) ≥ exp (D (pθ′ (τ) ||pθ (τ) r (τ))), and we can minimize

JKL = D (pθ′ (τ) ||pθ (τ) r (τ)) =
∫
pθ (τ) r (τ) log

pθ (τ) r (τ)
pθ′ (τ)

dτ (5)

without the problems which have troubled the reinforcement learning community when
optimizing the upper bound as we are guaranteed to improve the policy. However, in
many cases, we might intend to punish divergence from the previous solution. In this
case, we intend to additionally control the distance which we move away from our
previous policy, e.g., minimize the term J+ = −D (pθ (τ) ||pθ′ (τ)). We can combine
these into a joint cost function

JKL+ = JKL + λJ+, (6)

where λ ∈ R+ is a positive punishment factor with 0 ≤ λ ≤ J(θ). Note that the
exchange of the arguments is due to the fact that the Kullback-Leibler divergence is
unsymmetric. This second term will play an important rule as both baselines and natural
policy gradients are a directly result of it. The proper determination of λ is non-trivial
and depends on the method. E.g., in policy gradients, this becomes the baseline.

2.2 Resulting Approaches for Policy Learning

We now proceed into deriving three different methods for lower bound optimization,
i.e., policy gradients, the natural actor-critic and reward-weighted regression. All three
of these can be derived from this one perspective.

Policy Gradients Approaches. It has recently been recognized that policy gradient
methods [1, 2] do not suffer from the drawbacks of the greedy operator and, thus, had a

Policy Learning – A Unified Perspective with Applications in Robotics 223

large revival in recent years. We can derive policy gradient approaches straightforwardly
from this formulation using the steepest descent of the first order taylor extension

θ′ = θ + α(∇JKL − λ∇J+) (7)

= θ + α

∫
pθ (τ) (r (τ)− λ) ∇ log pθ′ (τ) dτ , (8)

whereα is a learning rate. This is only true as for the first derivative ∇D(pθ(τ)||pθ′(τ))
= ∇D (pθ′ (τ) ||pθ (τ)). The punishment factor from before simply becomes the base-
line of the policy gradient estimator. As ∇ log pθ′ (τ) =

∑n−1
t=1 ∇ log π(ut|xt; θ), we

obtain the straightforward gradient estimator also known as REINFORCE, policy gradi-
ent theorem or GPOMDP, for an overview see [1]. The punishment term only constrains
the variance of the policy gradient estimate and vanishes as ∇JKL+ = ∇JKL for infinite
data. However, this policy update can be shown to be rather slow [9, 19, 20, 21].

Natural Policy Gradient Approaches. Suprisingly, the speed update can be improved
significantly if we punish higher order terms of J+, e.g., the second term of the taylor
expansion yields

θ′ = argmaxθ′(θ′ − θ)T (∇JKL − λ∇J+)− 1
2
λ(θ′ − θ)T ∇2J+(θ′ − θ) (9)

= λ
(∇2J+

)−1
(∇JKL − λ∇J+) = λF−1g1, (10)

where F = ∇2D (pθ (τ) ||pθ′ (τ)) = ∇2D (pθ′ (τ) ||pθ (τ)) = ∇2J+ is also known
as the Fisher information matrix and the resulting policy update g2 is known as the Nat-
ural Policy Gradient. Surprisingly, the second order term has not yet been expanded and
no Natural second-order gradient approaches are known. Thus, this could potentially be
a great topic for future research.

EM-Policy Learning. In a very special case, we can solve for the optimal policy
parameters, e.g, for policy which are linear in the log-derivatives such as

∇ log π(ut|xt; θ) = A (xt,ut)θ + b (xt,ut) , (11)

it is straightforward to derive an EM algorithm such as

θ′ = α−1β, (12)

α =
∫
pθ (τ) (r (τ)− λ)

n∑
t=1

A (xt,ut) dτ , (13)

β =
∫
pθ (τ) (r (τ)− λ)

n∑
t=1

b (xt,ut) dτ . (14)

This type of algorithms can result into very fast policy updates if applicable. It does
not require a learning rate and is guaranteed to converge to at least a locally optimal
solution.

224 J. Peters, J. Kober, and D. Nguyen-Tuong

2.3 Sketch of the Resulting Algorithms

Thus, we have developed two different classes of algorithms, i.e., the Natural Actor-
Critic and the Reward-Weighted Regression.

Natural Actor-Critic. The Natural Actor-Critic algorithms [19, 20] instantiations of
the natural policy gradient previously described with a large or infinite horizon n. They
are considered the fastest policy gradient methods to date and “the current method of
choice” [1]. They rely on the insight that we need to maximize the reward while keeping
the loss of experience constant, i.e., we need to measure the distance between our cur-
rent path distribution and the new path distribution created by the policy. This distance
can be measured by the Kullback-Leibler divergence and approximated using the Fisher
information metric resulting in a natural policy gradient approach. This natural policy
gradient has a connection to the recently introduced compatible function approximation,
which allows to obtain the Natural Actor-Critic. Interestingly, earlier Actor-Critic ap-
proaches can be derived from this new approach. In application to motor primitive learn-
ing, we can demonstrate that the Natural Actor-Critic outperforms both finite-difference
gradients as well as ‘vanilla’ policy gradient methods with optimal baselines.

Reward-Weighted Regression. In contrast to Natural Actor-Critic algorithms, the
Reward-Weighted Regression algorithm [18] focuses on immediate reward improve-
ment, i.e., n = 1, and employs an adaptation of the expectation maximization (EM)
policy learning algorithm for reinforcement learning as previously described instead
of a gradient based approach. The key difference here is that when using immediate
rewards, we can learn from our actions directly, i.e., use them as training examples sim-
ilar to a supervised learning problem with a higher priority for samples with a higher
reward. Thus, this problem is a reward-weighted regression problem, i.e., it has a well-
defined solution which can be obtained using established regression techniques. While
we have given a more intuitive explanation of this algorithm, it corresponds to a prop-
erly derived maximization-maximization (MM) algorithm which maximizes a lower
bound on the immediate reward similar to an EM algorithm. Our applications show that
it scales to high dimensional domains and learns a good policy without any imitation of
a human teacher.

Policy Learning by Weighting Exploration with Rewards. A recent development is
the policy learning by weighting exploration with rewards or PoWER method [12]. In
this case, we attempt to extend the previous work of the reward-weighted regression
from the immediate reward case to longer horizons. When using the reward-weighted
regression, we suffer from a multitude of artificial local plateaus and will not converge
to the optimal solution. However, the insight that state-dependent exploration rates re-
sult into this algorithm. Again, an EM algorithm is obtained and turns out to be highly
efficient in the context of learning Kendama [12].

3 Robot Application

The general setup presented in this paper can be applied in robotics using analytical
models as well as the presented learning algorithms. The applications presented in this
paper include motor primitive learning and operational space control.

Policy Learning – A Unified Perspective with Applications in Robotics 225

0.5 0.55 0.6 0.65 0.7 0.75
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3
(b) Task-Space Performance x vs y

Cartesian Position x
C

ar
te

si
an

P
os

iti
on

y

Desired
Learned
Analytical

0.38 0.4 0.42

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3
(c) y vs z

Cartesian Position z

C
ar

te
si

an
P

os
iti

on
y

(a) Mitsubishi PA-10

Fig. 1. (a) Mitsubishi PA-10 robot arm with seven degrees of freedom used in the experiments in
this paper. (b) This figure illustrates the task performance of both the analytical and the learned
resolved velocity control laws. Here, the green dotted line shows the desired trajectory which
the robot should follow, the red dashed line is the performance of the real-time learning control
law while the blue solid line shows the performance of the resolved velocity control law. Note,
that while the online learning solution is as good as the analytical solution, it still yields compa-
rable performance without any pre-training of the local control laws before the online learning
(Nevertheless, the predictors were pre-trained).

3.1 Learning Operational Space Control

Operational space control is one of the most general frameworks for obtaining task-level
control laws in robotics. In this paper, we present a learning framework for operational
space control which is a result of a reformulation of operational space control as a
general point-wise optimal control framework and our insights into immediate reward
reinforcement learning. While the general learning of operational space controllers with
redundant degrees of freedom is non-convex and thus global supervised learning tech-
niques cannot be applied straightforwardly, we can gain two insights, i.e., that the prob-
lem is locally convex and that our point-wise cost function allows us to ensure global
consistency among the local solutions. We show that this can yield the analytically de-
termined optimal solution for simulated three degrees of freedom arms where we can
sample the state-space sufficiently. Similarly, we can show the framework works well
for simulations of the both three and seven degrees of freedom robot arms as presented
in Figure 1.

3.2 Motor Primitive Improvement by Reinforcement Learning

The main application of our long-term improvement framework is the optimization of
motor primitives. Here, we follow essentially the previously outlined idea of acquiring
an initial solution by supervised learning and then using reinforcement learning for
motor primitive improvement. For this, we demonstrate both comparisons of motor
primitive learning with different policy gradient methods, i.e., finite difference methods,
‘vanilla’ policy gradient methods and the Natural Actor-Critic, as well as an application
of the most successful method, the Natural Actor-Critic to T-Ball learning on a physical,
anthropomorphic SARCOS Master Arm, see Figure 2.

226 J. Peters, J. Kober, and D. Nguyen-Tuong

��������	�
��
����
���
��

�����
�
�������
������������
��

����������������
������������
��

����������������
����	��������

0 100 200 300 400
-10

-8

-6

-4

-2

0
x 10

5

��
�����

�
��
��
��

�
�
��
��
�θ
�

Fig. 2. This figure shows (a) the performance of a baseball swing task when using the motor
primitives for learning. In (b), the learning system is initialized by imitation learning, in (c) it is
initially failing at reproducing the motor behavior, and (d) after several hundred episodes exhibit-
ing a nicely learned batting.

Fig. 3. This figure illustrates the successfully learned motion of the Kendama trial. For achieving
this motion, motor primitives with external feedback had to be learned. Only an imitation from
a human trial recorded in a VICON setup and, subsequently, reinforcement learning allowed to
learn this motion reliably.

Another example for applying policy learning to the motor primitive frame is the
children’s game Kendama [12]. Here, we have managed to learn a good policy again
from a human demonstration which fails to bring the ball into the cup. Subsequently,
we have learned how to improve our policy with the PoWER method [12] and have
managed to learn a good motor primitive-based control policy. The results are shown in
Figure 3.

4 Conclusion

In conclusion, in this paper, we have presented a general framework for learning motor
skills which is based on a thorough, analytically understanding of robot task representa-
tion and execution. We have introduced a general framework for policy learning which
allows the derivation of a variety of novel reinforcement learning methods including the
Natural Actor-Critic and the Reward-Weighted Regression algorithm. We demonstrate
the efficiency of these reinforcement learning methods in the application of learning to
hit a baseball with an anthropomorphic robot arm on a physical SARCOS master arm
using the Natural Actor-Critic, and in simulation for the learning of operational space
with reward-weighted regression.

Policy Learning – A Unified Perspective with Applications in Robotics 227

References

1. Aberdeen, D.: POMDPs and policy gradients. In: Proceedings of the Machine Learning Sum-
mer School (MLSS), Canberra, Australia (2006)

2. Aberdeen, D.A.: Policy-Gradient Algorithms for Partially Observable Markov Decision Pro-
cesses. Ph.D thesis, Australian National Unversity (2003)

3. Benbrahim, H., Doleac, J., Franklin, J., Selfridge, O.: Real-time learning: A ball on a beam.
In: Proceedings of the International Joint Conference on Neural Networks (IJCNN), Balti-
more, MD (1992)

4. Benbrahim, H., Franklin, J.: Biped dynamic walking using reinforcement learning. Robotics
and Autonomous Systems 22, 283–302 (1997)

5. Dayan, P., Hinton, G.E.: Using expectation-maximization for reinforcement learning. Neural
Computation 9(2), 271–278 (1997)

6. Endo, G., Morimoto, J., Matsubara, T., Nakanishi, J., Cheng, G.: Learning cpg sensory feed-
back with policy gradient for biped locomotion for a full-body humanoid. In: Proceedings of
the National Conference on Artificial Intelligence (AAAI), Pittsburgh, PA (2005)

7. Geng, T., Porr, B., Wörgötter, F.: Fast biped walking with a reflexive neuronal controller and
real-time online learning. In: Int. Journal of Robotics Res. (submitted, 2005)

8. Gullapalli, V., Franklin, J., Benbrahim, H.: Aquiring robot skills via reinforcement learning.
IEEE Control Systems Journal, Special Issue on Robotics: Capturing Natural Motion 4(1),
13–24 (1994)

9. Kakade, S.A.: Natural policy gradient. In: Advances in Neural Information Processing Sys-
tems, Vancouver, CA, vol. 14 (2002)

10. Kimura, H., Kobayashi, S.: Reinforcement learning for locomotion of a two-linked robot
arm. In: Birk, A., Demiris, J. (eds.) EWLR 1997. LNCS, vol. 1545, pp. 144–153. Springer,
Heidelberg (1998)

11. Kimura, H., Kobayashi, S.: Reinforcement learning for continuous action using stochastic
gradient ascent. In: Proceedings of the International Conference on Intelligent Autonomous
Systems (IAS), Madison, Wisconsin, vol. 5, pp. 288–295 (1998)

12. Kober, J., Peters, J.: Reinforcement learning of perceptual coupling for motor primitives. In:
The European Workshop on Reinforcement Learning, EWRL (submitted, 2008)

13. Kohl, N., Stone, P.: Policy gradient reinforcement learning for fast quadrupedal locomotion.
In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
New Orleans, LA (May 2004)

14. Konda, V., Tsitsiklis, J.: Actor-critic algorithms. Advances in Neural Information Processing
Systems 12 (2000)

15. Mitsunaga, N., Smith, C., Kanda, T., Ishiguro, H., Hagita, N.: Robot behavior adaptation
for human-robot interaction based on policy gradient reinforcement learning. In: Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Edmonton, Canada, pp. 1594–1601 (2005)

16. Mori, T., Nakamura, Y., Sato, M.-a., Ishii, S.: Reinforcement learning for cpg-driven biped
robot. In: Proceedings of the National Conference on Artificial Intelligence (AAAI), San
Jose, CA, pp. 623–630 (2004)

17. Peters, J.: The bias of the greedy update. Technical report, University of Southern California
(2007)

18. Peters, J., Schaal, S.: Learning operational space control. In: Proceedings of Robotics: Sci-
ence and Systems (RSS), Philadelphia, PA (2006)

19. Peters, J., Vijayakumar, S., Schaal, S.: Reinforcement learning for humanoid robotics.
In: Proceedings of the IEEE-RAS International Conference on Humanoid Robots (HU-
MANOIDS), Karlsruhe, Germany (September 2003)

228 J. Peters, J. Kober, and D. Nguyen-Tuong

20. Peters, J., Vijayakumar, S., Schaal, S.: Natural actor-critic. In: Gama, J., Camacho, R.,
Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS, vol. 3720, pp. 280–291.
Springer, Heidelberg (2005)

21. Richter, S., Aberdeen, D., Yu, J.: Natural actor-critic for road traffic optimisation. In:
Schoelkopf, B., Platt, J.C., Hofmann, T. (eds.) Advances in Neural Information Processing
Systems, vol. 19. MIT Press, Cambridge (2007)

22. Sato, M.-a., Nakamura, Y., Ishii, S.: Reinforcement learning for biped locomotion. In: Dor-
ronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 777–782. Springer, Heidelberg (2002)

23. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for reinforce-
ment learning with function approximation. In: Solla, S.A., Leen, T.K., Mueller, K.-R. (eds.)
Advances in Neural Information Processing Systems (NIPS), Denver, CO. MIT Press, Cam-
bridge (2000)

24. Tedrake, R., Zhang, T.W., Seung, H.S.: Learning to walk in 20 minutes. In: Proceedings of
the Yale Workshop on Adaptive and Learning Systems. Yale University, New Haven (2005)

Probabilistic Inference for
Fast Learning in Control

Carl Edward Rasmussen1,2 and Marc Peter Deisenroth1,3

1 Department of Engineering, University of Cambridge, UK
2 Max Planck Institute for Biological Cybernetics, Tübingen, Germany

3 Faculty of Informatics, Universität Karlsruhe (TH), Germany

Abstract. We provide a novel framework for very fast model-based rein-
forcement learning in continuous state and action spaces. The framework
requires probabilistic models that explicitly characterize their levels of
confidence. Within this framework, we use flexible, non-parametric mod-
els to describe the world based on previously collected experience. We
demonstrate learning on the cart-pole problem in a setting where we
provide very limited prior knowledge about the task. Learning progresses
rapidly, and a good policy is found after only a hand-full of iterations.

1 Introduction

Learning from experience is a key ingredient in the behavior of intelligent beings
and holds great potential for artificial systems. Algorithms for learning from
experience are studied in the areas of reinforcement learning (RL) and adaptive
control. A central issue for such algorithms is the speed of learning, that is, the
number of trials necessary to learn a task. Many learning algorithms require a
huge number of trials to succeed, whereas biological systems often learn quickly.

There are broadly two types of approaches to speed up learning of artificial
systems. One approach is to constrain the task in various ways to simplify learn-
ing. The issue with this approach is that it is highly problem dependent and relies
on an a priori understanding of the characteristics of the task. Alternatively, one
can speed up learning by extracting more useful information from available ex-
perience. This effect can be achieved by carefully modeling the observations. In a
practical application, one would typically combine these two approaches. In this
paper, we are concerned solely with the second approach: How can we learn as
fast as possible, given only very limited prior understanding of a task? Thus, we
are not looking for an engineering solution to a particular problem, but rather
we elicit a general algorithm for effective learning. The approach is general. For
purposes of illustration, we will apply it to the well-known cart-pole problem.

1.1 Related Work

Experience from real interactions can be used for two purposes. It can be used
either to update the current model of the world (indirect RL) or it can be used to

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 229–242, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

230 C.E. Rasmussen and M.P. Deisenroth

improve the value function and/or policy directly (direct RL), or combinations
of the two. With a learned model, it is possible to get simulated experience to
perform a planning update resulting in a new (model-specific) policy and/or
value function. Real experience is used to build the model and not to directly
optimize the policy itself. This idea is described by Sutton’s Dyna architecture
introduced in [1].

Direct and indirect methods have different strengths and weaknesses. On the
one hand, model-free algorithms do not rely on a (possibly incorrect) model.
On the other hand, they require many interactions with the real system to find
a solution to the considered RL problem. In real-world problems, hundreds of
thousands or millions of interactions with the real system are often infeasible due
to time, physical, and monetary constraints. In contrast to model-free methods,
indirect (model-based) approaches can make more efficient use of limited expe-
rience. However, they may suffer if the model employed is not a sufficiently good
approximation to the real world. This problem was already recognized by Atke-
son and Santamaŕıa [2] and Atkeson and Schaal [3]. To overcome the problem
of policies for inaccurate models, Abbeel et al. add a heuristic bias term when
updating the model after gathering real experience, [4]. In [5], Poupart et al.
learn a probabilistic model for a finite state POMDP problem to incorporate
observations into prior knowledge. However, a principled and rigorous way of
building models that consistently quantify knowledge and uncertainty does not
exist in the RL literature to our best knowledge. In our approach, we use flexible
non-parametric probabilistic models to reap the benefit of the indirect approach
while minimizing any problems of model bias.

Traditionally, solving even relatively simple tasks from scratch have been con-
sidered “daunting”, [6], in the absence of strong task-specific prior assumptions.
In the context of robotics, one popular solution employs prior knowledge pro-
vided by a human “teacher” to restrict the solution space [3,4,6,7,8]. The teacher
shows the robot what a possible solution looks like by demonstrating it. Building
a (local) model using data from this demonstration might also alleviate model
errors along a good trajectory.

In contrast to previous work, we propose a fast RL algorithm which is able
to learn a good policy without problem-specific prior knowledge. Similar to [9]
and [10], we consider model-based policy iteration using probabilistic dynamics
models. However, in [9,10], actions are considered as parameters to be optimized
in any state rather than modeling the policy as a function of the state. In contrast
to [9] and [10], we propose learning the policy explicitly.

2 Fast Reinforcement Learning Framework

For fast reinforcement learning, we propose an adaptive probabilistic world
model learned on previous experience. Due to limited experience, a probabilis-
tic model is required to appropriately model what is known and what not. The
model is used in a planning step to determine a good (model-optimized) policy.

Probabilistic Inference for Fast Learning in Control 231

Algorithm 1. Fast reinforcement learning
1: initial exploration � interaction phase
2: loop
3: collect observations
4: update probabilistic dynamics model
5: optimize policy through simulation � planning phase
6: apply (model-optimized) policy to real system � interaction phase
7: end loop

A high-level description of the general framework is given in Algorithm 1. We
distinguish between the phase of real interaction and simulation in the planning
phase. The algorithm is initialized by an arbitrary policy and some notion about
the current state of the world. In the interaction phase, we take this information
and apply a single action to the real world according to our current policy. We
observe a new state and employ the policy again. Subsequently, the probabilistic
world model is updated using new and historical experience collected during
the interaction phases. During the planning phase, we take a state distribution
and simulate the world with the corresponding distribution over actions. The
probabilistic world model determines a distribution over successor states. The
controller computes the corresponding distribution over costs and the system is
being simulated by applying the policy to the entire state distribution.

During learning, the policy will be optimized in the planning phase based on
the evidence so far. However, it may be that because of limited experience the
simulations do not correspond to the real world. When this situation occurs and
we apply the model-optimized policy to the real system, the model will discover
the discrepancy between the model’s predictions and the world. This new insight
will be incorporated into the subsequent model update.

Crucially, in order for the internal simulations to reflect the real world as
accurately as possible, the dynamics models must faithfully represent their fi-
delities of how accurate they are. For example, if a state is visited on a simulated
trajectory about which not much knowledge has been acquired, the model must
be able to quantify this uncertainty, and not simply assume that its best guess is
close to the truth. A probabilistic model quantifies knowledge and can be consid-
ered as a model that captures all plausible models in a distribution over models.
The use of probabilistic models for the dynamics allows us to keep track of the
uncertainties in the simulations used for planning. Typically, in early stages of
learning, the uncertainty in the states will grow with increasing prediction hori-
zon. When applying a good real-world policy on the other hand, we expect the
uncertainty to collapse because the system is being controlled. With increasing
experience, the probabilistic model will tend to a deterministic one.

Modeling a dynamic system is generally fairly easy for short time horizons,
but gets progressively more challenging as the horizon increases. Therefore, we
are forced to learn the dynamics model on relatively short time scales. However,
good control strategies often require the consideration of long-term effects of

232 C.E. Rasmussen and M.P. Deisenroth

immediate actions. To bridge this gap, we need to cascade many short-term
predictions to assess long-term behavior during the planning phase.

Our approach explicitly requires a probabilistic world model in the planning
step although the framework resembles Sutton’s Dyna architecture introduced
in [1]. However, we believe that utilizing a deterministic model is inconsistent
when uncertainties are involved.

Cost Function. Let us revisit Algorithm 1. In the planning stage, the policy
is optimized to minimize the expected long-term cost starting from an initial
state distribution. The expected immediate cost is a function of the state. Tra-
ditionally, the squared error cost function has been extensively used. However,
because of its convexity and unboundedness, the cumulative cost will be highly
dependent on the worst state along a trajectory. Initially, when the dynamics
model is uncertain, the uncertainty may grow rapidly with the time horizon, so
that the expected cost will be highly sensitive to details of a distribution which
essentially encodes that the model has “lost track of the state”. To avoid the
extreme dependence on these essentially arbitrary details, we use instead an im-
mediate cost function which is locally quadratic, but which saturates for large
deviations from the desired goal.

Stochastic Simulation. Although the policy is a deterministic function of
the state, the simulation of trajectories involves distributions over trajecto-
ries. The states are uncertain since the learned dynamics model is probabilistic.
Intuitively speaking, as the probabilistic model is a distribution over all plausi-
ble models, a deterministic state is being mapped through all plausible transit-
ion functions resulting in a distribution over successors states. In the simulation
phase, the distribution over states thus implies a distribution over actions, even
when the policy is deterministic. When the policy is applied to the real sys-
tem where the current state has just been measured, a single action is applied
deterministically.

3 Implementation

In the following, we describe how to implement the general ideas from the pre-
vious section in discrete-time setting with continuous states and actions.

The probabilistic short-term dynamics models are implemented using flexible
non-parametric models based on Gaussian processes (GPs). State uncertainty is
explicitly propagated forward to obtain a probabilistic representation of long-
term behavior. These computations can be done approximately in closed form,
and Markov chain Monte Carlo is not necessary. Conditioned on the probabilis-
tic dynamics model, the policy is optimized using policy iteration. Since the
implicit internal simulation of the system can be done analytically, we have a
computationally efficient method to perform a policy evaluation step. Moreover,
we can compute the gradient of the expected long-term cost with respect to the
policy parameters analytically, which allows the use of standard optimization
methods, such as conjugate gradients.

Probabilistic Inference for Fast Learning in Control 233

3.1 Dynamics Model

We propose learning the dynamics using Gaussian process models. A GP is a dis-
tribution over functions and utilized for state-of-the-art Bayesian non-parametric
regression. Regarding a function as an infinitely long vector, all necessary com-
putations can be broken down to manipulating standard Gaussian distribu-
tions. Thus, GP regression combines both flexible non-parametric modeling and
tractable Bayesian inference. For further details, please refer to [11].

The GP dynamics model takes as input a representation of the current state
and action. As output the GP computes a representation of the distribution
over consecutive states. In particular, for a D-dimensional state, we utilize D
separate GPs, one for each state dimension, explicitly incorporating correlations
between state variables. The dynamics models are learned using the observed
state trajectories by the standard algorithm (evidence maximization), see [11].

In the planning stage, the predicted state trajectories are uncertain. We there-
fore need to be able to predict outputs when the inputs are uncertain. To carry
out the necessary computations, we use results from Girard et al., [12], and
Kuss [9]. Generally, a Gaussian state followed by a nonlinear dynamics results
in a non-Gaussian successor state. We follow the above references and compute
exactly the two first moments of the resulting distribution, that is, a Gaussian
approximation. By iteration, we can thus compute the distribution over trajec-
tories in closed form.

Throughout all computations, we explicitly take the uncertainty about the
dynamics into account by averaging over all plausible dynamics models given the
current set of observations from the real world. The variances of the predicted
successor states take into account both the uncertainty in the current state and
the possibly imprecise model of the actual dynamics.

3.2 Policy Model

The controller implements a nonlinear deterministic policy. While any function
approximator can be used for this purpose, we apply (the mean of) a non-
parametric Gaussian process policy model. This policy GP is parameterized
by a (pseudo-) training set, consisting of pairs of states (training inputs) and
corresponding actions (training targets). By modifying this training set, we can
control the policy being implemented. This idea is related to the sparse Gaussian
process approximation using inducing inputs introduced by Snelson and Ghahra-
mani in [13]. In contrast to [13], we do not average over the training targets, but
optimize them as well. Note that since the policy GP predicts deterministically,
the uncertainty about the underlying policy is zero.

In this paper, we consider deterministic policies only: For a deterministic in-
put, the policy always returns the same control. However, due to the probabilistic
dynamics model there will be uncertainties about states resulting in distributions
over actions as described in Section 3.1. As illustrated in Figure 1, during the
planning phase, we cascade short-term dynamics models to predict what is going
to happen in the long term. When interacting with the real system, we assume

234 C.E. Rasmussen and M.P. Deisenroth

dynamics

time

state s

t

st

t+1

policy policy π

state s action u

successor statest+1

policy π

t+2

Fig. 1. Interplay of dynamics GP and policy to propagate uncertainty over time. Con-
sider a state distribution p(st) at time step t. The policy takes this distribution as
input and returns a distribution over actions. The dynamics model takes a fully joint
Gaussian of states and actions (shaded nodes in the figure) as input distribution and
determines mean and covariance of the successor state distribution p(st+1) analytically
as detailed in [12]. The distribution p(st+1) is approximated by a Gaussian with the
corresponding mean and covariance.

that the state is measured deterministically. Then, the controller applies the
(unique) corresponding control signal. In other words, we apply only a single
action deterministically when interacting with the real system, but we consider
a distribution over actions in simulation.

3.3 Policy Iteration

Determination of an optimal policy through policy iteration is a natural choice
within the proposed framework. In the following, we will show that the policy can
be evaluated analytically. Moreover, we provide a framework where the gradient
of the expected cumulative cost with respect to the policy parameters can be
determined analytically.

Policy Evaluation. Assume a given policy π and a given probabilistic dynamics
model. To evaluate the quality of the policy starting from a particular state
distribution p(s0), the expected cost of the trajectory τ := (s0, π(s0), . . . , sT)
has to be determined. Assuming time-additive losses and a Markovian structure
of the problem, the expected undiscounted finite-horizon cost

V π(τ) := Eτ

[T∑
t=0

�(st)
∣∣π, p(s0)

]
=

T∑
t=0

E[�(st)|π, p(s0)] (1)

has to be evaluated, where the expectation is taken with respect to the proba-
bility distribution over trajectories τ . As described in Section 3.1, a Gaussian
approximation of the predictive distributions of future states can be determined
analytically. To evaluate equation (1), it remains to compute E[�(st)|π, p(s0)] for
an immediate cost function �. If we restrict � for example to contain combina-
tions involving trigonometric functions, exponentials, and powers, this integral
is analytically tractable and the gradient of equation (1) with respect to the
policy parameters can be computed analytically.

Probabilistic Inference for Fast Learning in Control 235

Policy Optimization. To optimize the policy, we minimize the expected long-
term cost (1) with respect to the policy parameters using a gradient-based
method. Two different kinds of parameters are involved in the Gaussian process
controller. Firstly, the hyper-parameters of the kernel and secondly, the pseudo
training set of the controller itself. All these parameters are collected inside the
parameter vector θ. They are treated as free variables to be optimized to find
an optimal strategy. In contrast to standard parameter optimization for GPs by
maximizing the marginal likelihood, the objective function in our RL setup is
the expected long-term cost given by equation (1).

We employ an efficient conjugate gradients minimizer, which requires the par-
tial derivatives of the objective function with respect to the policy parameters.
These derivatives can be computed analytically by repeated application of the
chain rule applied to the parameters of the distributions governing the states over
time. The gradient of V π, equation (1), with respect to the policy parameters is
given by

dV π(τ)
dθ

=
T∑

t=0

d
dθ

E[�(st)|πθ, p(s0)] ,

where the subscript θ stresses the dependency of π on the parameter set θ.
The total derivative with respect to the policy parameters is denoted by d

dθ . As
we know the approximate (Gaussian) state distribution p(st), we just have to
compute(

d
dµt

E[�(st)|πθ , p(s0)]
)

dµt

dθ
+
(

d
dΣt

E[�(st)|πθ, p(s0)]
)

dΣt

dθ

for t = 0, . . . , T , where µt and Σt are mean and covariance of p(st), respectively.
Exploiting the Markov property, required computations boil down to

dµt

dθ
=

∂µt

∂µt−1

dµt−1

dθ
+

∂µt

∂Σt−1

dΣt−1

dθ
+
∂µt

∂θ
, (2)

dΣt

dθ
=

∂Σt

∂µt−1

dµt−1

dθ
+

∂Σt

∂Σt−1

dΣt−1

dθ
+
∂Σt

∂θ
, (3)

where θ contains all policy parameters and ∂
∂θ denotes the partial derivative

with respect to the parameter vector θ. Note that the moments of the state
distribution p(st) is functionally dependent on the parameter vector θ and the
moments µt−1 and Σt−1 of the state distribution at time t−1. In principle, these
computations are straightforward although the details are somewhat lengthy.

4 Experiments

For demonstration purposes, we apply our approach to learning a controller
for the underactuated cart-pole problem. The cart-pole task is depicted in Fig-
ure 2. As in Doya’s paper [14], the pendulum has to be swung up and balanced.

236 C.E. Rasmussen and M.P. Deisenroth

u

current state goal state

d

Fig. 2. Cart-pole problem. The pendulum has to be swung up and balanced at the
cross by just pushing the cart to left and right. The Euclidean distance between the
tip of the pendulum and the goal state is shown by the dashed line.

However, instead of just balancing the pendulum, we additionally require the
pendulum to be balanced in a specific location given by the cross in Figure 2.
Note that the solution of the task implies that the cart stops at the triangle.
One point which makes the problem non-trivial is that to solve it, sometimes
actions have to be taken which temporarily move the pendulum further away
from the target. Thus, greedily optimizing a short-term cost will lead to a policy
that fails to achieve the task. In control theory, the solution of the task is usually
based on an intricate understanding of the system dynamics, which we do not
assume in this paper. Our objective is to learn a good policy without a prior
understanding of the system.

4.1 Cost Function

In general, we are interested in understanding the generic principles, which allow
good solutions to be learned automatically. Hence, the only built-in assumption
is that the state variables evolve smoothly over time. The state s of the system
consists of cart position x, cart velocity ẋ, angle1 of the pole ϕ, and angular
velocity of the pole ϕ̇.

The only feedback the controller gets about the quality of its applied action
is the squared distance

d(s)2 = x2 + 2xl sin(ϕ) + 2l2 + 2l2 cos(ϕ)

between the tip of the pendulum and its desired position, measured every 200 ms.
The distance d is denoted by the dashed line in Figure 2. Note, that in contrast
to common implementations, d only depends on the position variables x, sin(ϕ),
and cos(ϕ). In particular, it does not depend on the velocity variables. We choose
the immediate cost
1 Since the angle is periodic, we actually encode it in the input to the dynamics GP

and policy GP as the two variables sin(ϕ) and cos(ϕ), to avoid any discontinuity in
the representation.

Probabilistic Inference for Fast Learning in Control 237

�(s) = 1− exp(− 1
2d(s)

2/c2) ∈ [0, 1] , (4)

where c = 0.25 m is a constant giving the distance at which the cost function
switches between locally quadratic and saturation. The cost is zero at the goal
state, increases with distance, but saturates at unity.

We generally think this cost is a better cost function than the standard
quadratic since for very uncertain states we will get a cost approaching unity
reflecting that the state is simply “not good”, whereas the quadratic cost would
depend crucially on the exact value of the error bar and highly penalize the most
extreme state variable.

Our choice of cost function is supposed to be a näıve, intuitive cost which does
not rely on an intricate understanding of the physical system. For example, with
a little more hindsight we may have chosen to also penalize the velocity variables
departure from zero. However, we consider this as a part of the challenge of the
learning problem. Our choice of the cost function reflects ignorance about the
dynamics as would be the case if we were using our algorithm to solve a complex
novel task. Elaborate tuning of the cost function (including also control penalty)
has indeed been used extensively in the literature to simplify problems. Here, we
derive our cost simply from purely geometric consideration. The only additional
information is the constant c = 0.25 m, giving a rough idea of what it means
to be “close” to a solution (note for comparison that the pendulum length is
0.6 m).

4.2 Experimental Setup

The dynamics of the cart-pole system follow the ODEs

ẍ =

(
u−bẋ+m l

2 ϕ̇2 sin ϕ

I+m(l
2)2 +m2(l

2)2g sinϕ cosϕ
)

(M +m)(I +m(l
2)2)−m2(l

2)2(cosϕ)2
,

ϕ̈ =
m l

2 cosϕ(u − bẋ+m l
2 ϕ̇

2 sinϕ) + (M +m)gm l
2 sinϕ

m2(l
2)2(cosϕ)2 − (M +m)(I +m(l

2)2)
,

where M = 0.5 kg is the mass of the cart, m = 0.5 kg the mass of the pole,
b = 0.1 N s/m the friction between cart and ground, l = 0.6 m the length of
the pole, I = 0.06 kgm2 the moment of inertia around the tip of the pole, and
g = 9.82 m/s2 the gravitational constant.

The control u ∈ [−10, 10] N is a horizontal force pushing the cart to left or
right. To guarantee that the controller learns and implements only forces in
the admissible range [−umax, umax] = [−10, 10] N, the probability distribution
of the control signal is squashed through the sine function, such that p(u) =
p(umax sin(π(s))).

For the dynamics model, we use four separate GP models, one for each state
variable. The policy is implemented by a GP, which is parameterized by a pseudo
training set of pairs of states and actions. Throughout the experiments, we use
a pseudo training set with 50 elements, and accordingly the policy contains
approximately 300 free parameters.

238 C.E. Rasmussen and M.P. Deisenroth

The eigen-frequency of this system is of the order of 1 Hz, and we use a short-
term prediction time of 0.2 seconds. Note that this is a much slower sampling time
than is typically used in conventional controllers for this problem. It is adequate
here, as it is easy to capture the dynamics at this time scale. We optimize the
objective function (1) over 5 s, that is, 25 time steps. In our setting, the initial
state distribution p(s0) is Gaussian with zero mean and covariance matrix Σ =
10−4I. The goal state is sgoal = [0, 0, π, 0]T . In other words, the initial state is
that the cart is in the right position, but the pendulum is hanging down (instead
of being balanced in the upright position). The task for the learning algorithm
is thus to explore the state space and to find and to exploit a strategy which will
achieve the swing-up and balancing. Note that this task is not achievable by a
linear controller.

We implement policy iteration within the fast RL framework given by Algo-
rithm 1 as follows. Initially, we assume fully unknown transition dynamics. To
build a first dynamics model, we have to gather some experience. We observe
two short (five seconds) trajectories of the system by applying forces randomly
starting from an initial state since we do not have prior knowledge about a good
policy. We initialize 50 pseudo training inputs of the controller to be the states
along the random trajectories. The corresponding pseudo training targets are
initialized randomly distributed around zero. In the next step, we build a prob-
abilistic Gaussian process model of the transition dynamics using the observed
data. Utilizing this model, we simulate the dynamics for five seconds and opti-
mize the policy parameters using conjugate gradients.2 Now, an optimized policy
for the current dynamics model has been determined, and we are ready to ap-
ply the policy to the real system again. The application of the model-optimized
policy is presumably not optimal when applied to the real system and, there-
fore, might lead the real cart-pole system to unexpected states. However, the
applied policy is better than just applying random forces, such that states closer
to the goal state are visited. We collect these new observations and update the
dynamics model by incorporating all experience from previous interactions with
the real system.

Alternating, the policy is optimized based on the dynamics model, and the
model itself is updated based on collected data when applying the policy to the
real system. With each iteration the probabilistic model describes the dynamics
better and with more confidence.

4.3 Evaluations

In Figure 3, the predicted immediate costs and the costs incurred when applying
the optimized policy to the real system are plotted over a horizon of 5 s. The
system is started in the state where the pendulum is hanging down.

In the top left plot, we see that for the first roughly 3 seconds the system does
not enter states with a cost significantly different from unity. At about 3 seconds
the model predicts a decline in cost, but simultaneously a rapid increase in the

2 Note that the derivatives (2) and (3) can be computed analytically exactly.

Probabilistic Inference for Fast Learning in Control 239

0 5 10 15 20 25

0

0.5

1

after 1 policy optimization

time step

im
m

ed
ia

te
 c

os
t

real cost

pred. cost

0 5 10 15 20 25

0

0.5

1

after 2 policy optimizations

time step

im
m

ed
ia

te
 c

os
t

real cost

pred. cost

0 5 10 15 20 25

0

0.5

1

after 5 policy optimizations

time step

im
m

ed
ia

te
 c

os
t

real cost

pred. cost

0 5 10 15 20 25

0

0.5

1

after 11 policy optimizations

time step

im
m

ed
ia

te
 c

os
t

real cost

pred. cost

Fig. 3. Predicted costs and real costs after 1, 2, 5, and 11 policy optimizations (from
top left to bottom right). The x-axis is the number of 200 ms time steps, the y-axis
is the immediate costs. The black dots denote the minimum possible immediate cost
when the pendulum is exactly in the goal state. The solid graphs show the real costs,
the dashed graphs show the predicted immediate cost distribution. The error bars are
twice the standard deviation.

error bars is seen. This reflects the poor dynamics model around the goal state as
we have never seen any data in this region. Applying the found policy, we see (in
the solid line) that indeed the cost does decrease after about 3 seconds. Further-
more, the actual trajectory lies roughly in agreement with the model’s assessment
of its own accuracy. In the top left hand plot, the model now has 5 seconds more
experience, also including states close to the goal state. The model now predicts
much smaller error bars, and that the small cost can be maintained until the
end of the simulation. The actual trajectory is in agreement with this. Iterating
the learning procedure for more steps results in even smaller error bars and in
a quicker swing-up action. The determined policy is not necessarily an optimal
one, but it is doing a fairly good job, and the system has found it automatically in
less than 60 seconds experience. See http://mlg.eng.cam.ac.uk/carl/ewrl08
for demos of the learning system. Doya solved a similar problem requiring about
20,000 seconds (approximately 5.5 hours) of interactions with the real system to
perform the swing-up reliably, [14].

Note that in the above experiments, we only test whether the system is able
to solve the task from a single specific start state. Generally, we would seek solu-
tions applicable to larger regions of the state space. Our algorithm can naturally
handle this in two ways: a wider distribution of start state can explicitly be spec-
ified, or alternatively, multiple paths with different start states (or distributions)
can be simulated. Both of these approaches work successfully, although we do
not report the results here due to lack of space.

http://mlg.eng.cam.ac.uk/carl/ewrl08

240 C.E. Rasmussen and M.P. Deisenroth

5 Discussion

We have demonstrated that our model-based Bayesian RL algorithm is able to
learn a policy for the cart-pole problem from scratch in a handful of iterations.
The algorithm carefully models uncertainties about the underlying latent dy-
namics and takes them seriously into account during planning. In contrast to
Doya’s results reported in [14], our algorithm is very fast and can solve the
swing-up task based on a minute or less interactions with the real system.

It is interesting to speculate what aspects of the model are key to its suc-
cess. Although we have not yet investigated this fully, we did assess whether it
is possible to solve the problem using a deterministic model for the dynamics.
We repeated the experiment, but changed the predictions to have zero variance
(which corresponds to a deterministic dynamics model). In this case, the algo-
rithm failed completely to solve the task. In particular, for the deterministic
model, the policy optimization problem becomes very difficult. This is presum-
ably caused by actions having effects over long horizons, even when the dynamics
models are so poor that very little can in fact be predicted. In contrast, the prob-
abilistic model “knows” when it loses track of the state, and thus the error signal
gets automatically “smoothed out”. In practice, for the deterministic system the
planning never finds trajectories with low expected cost, although inserting the
policy from the probabilistic system yields a low cost. These local minima prob-
lems are very severe: In the cart-pole task, we have never managed to get the
deterministic system to find a good solution, whereas the probabilistic system
has never failed. Demos of the task with a deterministic dynamics model can
also be found at http://mlg.eng.cam.ac.uk/carl/ewrl08/.

5.1 Current Limitations

Although our system works very well on the simple cart-pole problem, there are
a number of ways in which the current implementation is limited:

Firstly, the system currently relies strictly on exploitation. When it has ob-
tained a reasonable strategy it never veers from this. Thus, the strategy found
is sometimes not close to an optimal strategy. For example, the experimental
results reported in the previous section find a solution which swings left, then
right and then left and up to balancing. In other equivalent runs, we have also
seen a more direct strategy, such as left, then right up to balance. We never seem
to find solutions worse than the one reported here, but there may be quite some
sensitivity to the initial experience (which is random in our case). A principled
solution allowing for explorations could be achieved within the current frame-
work, by using a cost depending on both the expected cost and the variance of
the cost. The variance of the cost can also be computed in closed form.

Secondly, our current approach learns very fast in terms of the amount of
experience required to solve the task, but the computational demand is not
negligible. In our current implementation, the optimization of the policy takes
about 1 hour of CPU time. Performance can certainly be improved by writing
more efficient code, and by speeding up the basic GP predictions using sparse

http://mlg.eng.cam.ac.uk/carl/ewrl08/

Probabilistic Inference for Fast Learning in Control 241

approximations, for instance, the recent methods described in [13]. Nevertheless,
it is not obvious that the scheme can necessarily learn in real time. However,
once the policy has been learned, the computational requirements of applying
the policy to a control task are trivial.

Thirdly, we have demonstrated learning in the special case where the obser-
vations are corrupted by only a very modest amount of observation noise. In
principle, there is nothing to hinder the use of the algorithm when observations
are very noisy, but one would probably have to estimate the current state more
carefully—in the current setup we just assume that the state is measured exactly.

Finally, in an actual implementation, one would perhaps prefer a piecewise lin-
ear policy over the currently implemented piecewise constant policy. This could
be achieved by formally treating the previously applied force as a component of
the state.

6 Conclusions and Outlook

We have developed a framework based on flexible probabilistic non-parametric
models for fast reinforcement learning in continuous state and action systems.
The framework is conceptually simple, relying on well-established ideas, but a
decisive difference is that we use fully probabilistic models of the world dynamics.

We have demonstrated the effectiveness of our approach on the cart-pole prob-
lem. Our algorithm finds a good policy from scratch using less than a minute
worth of experiences—as far as we know this is an unprecedented speed for this
kind of problem, which has previously been considered very hard to learn. More-
over, we require only very few assumptions: 1) we set the sampling time to be
200 ms, that is, somewhat shorter than the eigen-frequency of the system, 2)
we set the trajectory length to be 5 s, that is, somewhat longer than the eigen-
frequency and 3) we set the length-scale for the cost function to be c = 0.25 m.
We have not experimented with other settings, but believe that our system is
fairly insensitive to these, as long as the order of magnitude is reasonable.

It is our belief that the success of our algorithm stems from the principled
approach to handling the model’s uncertainty. We anticipate that the effective
solutions of more complex problems will also be possible using this algorithm. In
the near future, we will explore how our algorithm performs on more challeng-
ing tasks, especially in systems with higher dimensional states. In particular, we
believe that principled algorithms to address the exploration versus exploitation
trade-off and other fundamental problems in practical algorithms for reinforce-
ment learning will require careful quantification of model uncertainty.

Acknowledgements

We thank Jan Peters for many helpful discussions. MPD acknowledges support
by the German Research Foundation (DFG) through grant RA 1030/1-3 to CER.

242 C.E. Rasmussen and M.P. Deisenroth

References

1. Sutton, R.S.: Integrated Architectures for Learning, Planning, and Reacting Based
on Approximate Dynamic Programming. In: Proceedings of the Seventh Interna-
tional Conference on Machine Learning, pp. 215–224. Morgan Kaufman Publishers,
San Francisco (1990)

2. Atkeson, C.G., Santamaŕıa, J.C.: A Comparison of Direct and Model-Based Rein-
forcement Learning. In: Proceedings of the International Conference on Robotics
and Automation (1997)

3. Atkeson, C.G., Schaal, S.: Robot Learning from Demonstration. In: Proceedings
of the 14th International Conference on Machine Learning, Nashville, TN, USA,
July 1997, pp. 12–20. Morgan Kaufmann, San Francisco (1997)

4. Abbeel, P., Quigley, M., Ng, A.Y.: Using Inaccurate Models in Reinforcement
Learning. In: Proceedings of the 23rd International Conference on Machine Learn-
ing, Pittsburgh, PA, USA, June 2006, pp. 1–8 (2006)

5. Poupart, P., Vlassis, N.: Model-based Bayesian Reinforcement Learning in Partially
Observable Domains. In: Proceedings of the International Symposium on Artificial
Intelligence and Mathematics, Fort Lauderdale, FL, USA (January 2008)

6. Schaal, S.: Learning From Demonstration. In: Advances in Neural Information
Processing Systems, vol. 9, pp. 1040–1046. The MIT Press, Cambridge (1997)

7. Abbeel, P., Ng, A.Y.: Exploration and Apprenticeship Learning in Reinforcement
Learning. In: Proceedings of th 22nd International Conference on Machine Learn-
ing, Bonn, Germay, August 2005, pp. 1–8 (2005)

8. Peters, J., Schaal, S.: Learning to Control in Operational Space. The International
Journal of Robotics Research 27(2), 197–212 (2008)

9. Kuss, M.: Gaussian Process Models for Robust Regression, Classification, and Re-
inforcement Learning. Ph.D thesis, Technische Universität Darmstadt, Germany
(February 2006)

10. Rasmussen, C.E., Kuss, M.: Gaussian Processes in Reinforcement Learning. In:
Advances in Neural Information Processing Systems, June 2004, vol. 16, pp. 751–
759. The MIT Press, Cambridge (2004)

11. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning.
Adaptive Computation and Machine Learning. The MIT Press, Cambridge (2006)

12. Girard, A., Rasmussen, C.E., Quiñonero Candela, J., Murray-Smith, R.: Gaussian
Process Priors with Uncertain Inputs—Application to Multiple-Step Ahead Time
Series Forecasting. In: Advances in Neural Information Processing Systems, vol. 15,
pp. 529–536. The MIT Press, Cambridge (2003)

13. Snelson, E., Ghahramani, Z.: Sparse Gaussian Processes using Pseudo-inputs. In:
Advances in Neural Information Processing Systems, vol. 18, pp. 1257–1264. The
MIT Press, Cambridge (2006)

14. Doya, K.: Reinforcement Learning in Continuous Time and Space. Neural Compu-
tation 12(1), 219–245 (2000)

United We Stand: Population Based Methods for
Solving Unknown POMDPs

Noel Welsh and Jeremy Wyatt

School of Computer Science
The University of Birmingham

Birmingham B15 2TT UK

Abstract. Solving large unknown POMDPs is an open research problem. Policy
search is one solution method that is attractive as it scales in the size of the pol-
icy, which is typically much simpler than the environment. We present a global
search algorithm capable of finding good policies for POMDPs that are substan-
tially larger than previously reported results. Our algorithm is general; we show
it can be used with, and improves the performance of, existing local search tech-
niques such as gradient ascent. Sharing information between the members of the
population is the key to our algorithm and we show it results in better perfor-
mance than equivalent parallel searches that do not share information. Unlike
previous work our algorithm does not require the size of the policy to be known
in advance.

1 Introduction

In this paper we address the problem of learning a finite-state controller (FSC) with
an unknown number of internal states for an unknown partially observable Markov
decision process (POMDP). Our method uses a population based search that shares
information between individuals to concentrate the search within the most promising
regions of the policy space. We show that this algorithm is:

– Capable of learning good policies for unknown POMDPs substantially larger than
previously reported in the literature

– More efficient than using equivalent resources to search without sharing informa-
tion

– Compatible with, and can improve upon the performance of existing local search
techniques such as gradient ascent,

Furthermore, we do not require the size of the policy is known in advance.
POMDPs are a well known class of formal problems used to model a wide range

of engineering tasks. If a POMDP is known planning algorithms may be used to solve
it. Exact planning is intractable [5] and in practice exact methods can only solve prob-
lems with tens of states. Approximate methods are more scalable and can now provide
solutions to problems with hundreds of states [9].

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 243–252, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

244 N. Welsh and J. Wyatt

A more realistic and much harder problem is to solve an unknown POMDP, par-
ticularly when the number of underlying states is unknown. This is the most general
POMDP problem, and the one we tackle here. The agent’s task is to select actions to
interact with the world, and learn an optimal policy based on the outcome of these ac-
tions. One approach to solving this problem is to build a model from interactions, and
create a policy by solving the model. In many cases we have noticed that the optimal
policy is much smaller than the model. Thus we search directly in the space of policies,
skipping the model building step. This places our work in the area known as policy
search[1, 8, 10].

Our initial experience with gradient ascent policy search showed it has a high vari-
ance due to noise in the gradient estimates. This work is motivated by a desire to reduce
the variance by maintaining a population of policies. To focus our work on the effect
of the population we have deliberately chosen a naive algorithm, with the expectation
that more sophisticated algorithms will only improve the results. We show that sharing
information within the population of policies is more efficient than equivalent searches
without sharing, that this algorithm can solve POMDPs with hundreds of states, and
that it can be combined with and improve the performance of existing policy search
algorithms.

2 POMDPs and FSCs

Formally, we model the environment as a partially observable Markov decision process
(POMDP), a tuple M =< S,A, T , ρ,O,B > where S is the set of states, A the set
of actions, T the transition function T : S × A × S → [0, 1] defining the probability
T (s, a, s′) = P (s′|a, s), ρ the reward function ρ : S × A → [0, 1], O the set of
output symbols, and B the observation function B : S × O → [0, 1] which defines the
probability B(s, z) = P (z|s).

The agent is controlled by a policy, which we model as a finite state controller (FSC),
a tuple P =< M, µa, µm,m0 > where M is the set of internal controller states,
µa the action function µa : M× A → [0, 1] defining a probability distribution over
all actions for each internal state, P (a|m), µm the internal state transition function
µm : M×O ×M → [0, 1] defining a probability distribution over the next internal
state given the current internal state and the current observation P (m′|o,m), and m0
the distribution over starting states m0 : M→ [0, 1].

We represent a FSC as two matrices of positive real numbers: the action function
of size |M| × |A|, and the transition function of size |M| × |O| × |M|. The action
function represents the probability of performing an action given the state of the FSC.
The transition function represents the probability of performing a state transition given
the current state and observation.

The numbers in the state and transition functions are translated into probabilities by
the Boltzmann (softmax) function. Let θi, i = 1 . . . n be a set of positive real numbers.
Then the Boltzmann function maps θi to a probabilityµi asµi=exp(θi/τ)/

∑
jexp(θj/τ).

τ is the so-called temperature parameter that varies the sensitivity of the Boltzmann
function to differences between values of θ. For all experiments τ was set to 1.

United We Stand: Population Based Methods for Solving Unknown POMDPs 245

3 Policy Search Algorithm

We wish to focus on the value of sharing information between members of the pop-
ulation, so our search algorithm is deliberately naive to highlight this effect. The key
components of our search algorithm are: the local search operators, which create a new
policy from an existing one, the global search operator, which creates new policies from
the population, and method of combining the operators. We now consider each aspect
in turn.

3.1 Searching with a Single Finite State Controller

Recall we represent a FSC as two matrices of positive real numbers. The simplest op-
erator generates a new policy from an existing one by randomly altering a value in one
of these matrices. We must also consider changing the number of states, so we have
another operator that creates random matrices bigger or smaller than the current policy.
Finally, as we wish to show that our technique can used with existing policy search
algorithms, we have reimplemented the GAPS gradient ascent algorithm[8], and use it
as our third local search operator. In summary, they are:

– Random perturbation of the transition or action probabilities
– Jumping to a random FSC with one more or fewer states
– GAPS gradient ascent

The specifics of the operators are:
A perturbation changes a single randomly chosen value in either matrix. As the

softmax involves an exponential the change cannot be too great or the resulting prob-
abilities will be extremely skewed. For a value v the new value is given by 0.5v +
uniformRandom(0.0, v).

A dimension jump creates a new policy with one more or one less state, within a de-
fined maximum and minimum. The new policy is initialised with parameters uniformly
drawn from the range [0.1, 2].

See [8] for more information on GAPS.

3.2 Searching with a Population of Finite State Controllers

Our global search operator should use information from the entire population to gener-
ate a new policy. The simplest method we can conceive is to replace one member of the
population with another. Thus our operator is:

– Cloning samples a FSC from the current population with probability proportional
to estimated return.

3.3 Population Simulated Annealing with Information Sharing

Having chosen our search operators we now combine them in a search algorithm. The
algorithm we choose is simulated annealing [4], which we modify to incorporate a
population.

246 N. Welsh and J. Wyatt

Simulated annealing is a stochastic hill climbing algorithm. The exploration/
exploitation tradeoff is controlled by a temperature parameter. At high temperatures
up hill moves are only weakly favoured over down hill moves, while at low tempera-
tures the algorithm approaches pure hill climbing. The temperature parameter is initially
set high, to encourage exploration, and then gradually reduced towards zero using an
algorithm known as the cooling schedule.

We call each temperature setting an iteration. For each iteration we generate pro-
posed policies by applying the search operators to each member of the current popula-
tion. Favouring simplicity, we select each operator with a fixed probability dependent
on the experimental setup. The new population is constructed from the proposals as fol-
lows: A proposal is always added to the new population if its estimated return is greater
than or equal to the estimated return of the policy from which it was generated. If this
is not the case it is accepted with a probability inversely proportional to the difference
in estimated return and proportional to the current temperature. This process continues
until a specified number of proposals have been made. If no proposals are accepted in
an iteration the search halts.

Given enough proposals and a slow enough cooling schedule simulated annealing
is guaranteed to converge to the global optimum. This theoretical guarantee only holds
for cooling schedules that are too slow to use in practice. Geometric cooling, where the
next temperature is some fixed proportion of the current temperature, is commonly used
though no guarantee of convergence holds in this case.

Our algorithm is given in Algorithm 1.

Algorithm 1: Population simulated annealing
Input: temp: the starting temperature; max: the maximum number of states,
proposals: the number of proposed policies per temperature step, size: the
number of individuals in the population.
Output: A population of optimised solutions
ANNEAL(min, max, proposals size)
(1) p ← createInitialPopulation(size)
(2) while temp > finalT emp
(3) p′ ← ∅
(4) foreach s ← p
(5) for i = 1 to proposals
(6) proposed ← proposeNewSolution(s, p)
(7) d ← quality(proposed)− quality(s)
(8) a ← min(1, exp(d)

temp
)

(9) u ← uniformRandom(0, 1.0)
(10) if u < a then s ← proposed
(11) p′ ← s ∪ p′

(12) if p = p′ then return (p)
(13) p ← p′

(14) temp ← decreaseTemperature(temp)
(15) return p

United We Stand: Population Based Methods for Solving Unknown POMDPs 247

4 An Empirical Study

We ran our algorithm on five problems: Load/Unload, the M-Maze, the Small Maze,
and the Tunnels Maze. The problems are summarised in Table 1.

Table 1. Summary of problems

PROBLEM STATES OBSERVATIONS ACTIONS

Load/Unload 10 3 2
M-Maze 11 6 4
Small Maze 44 38 4
Tunnels 165 44 4

The Load/Unload problem is shown in Figure 1. The agent starts at the left end of
a corridor five units long, and must move to the right end (load) and then return to the
start (unload). The agent may only move left or right. Actions always succeed unless
the action would take the agent into a wall in which case it stays where it is. The agent
receives a reward of 1 when it loads (if it was not previously loaded), a reward of 1
when it unloads (if it was previously loaded), and a reward of −1 at all other times.
Hence the maximum total (undiscounted) reward possible is −4.1

The optimal policy for Load/Unload requires two states (alternatively, one bit of
memory) to record if the agent is loaded.

The M-Maze[6] is shown in Figure 2. The agent starts in either of the positions
labelled Start and must navigate to the Goal position. The corner positions are the
only means the agent has for distinguishing its starting place. The optimal policy for
the M-Maze requires 4 states. The agent receives a reward of 1 when it reaches the goal
and a reward of −1 at all other times, so the maximum total reward is −4.0.

The Small Maze is a 10x10 grid world, shown in Figure 3. The agent starts in the
lower right corner and must navigate around obstacles to the upper left corner. We
use two variants of the Small Maze: one with deterministic transitions, and one with
stochastic transitions and two starting points. In the stochastic variant, actions have
only a 0.875 probability of succeeding, and a 0.125 probability of keeping the agent
in the same square. The Tunnels Maze, shown in Figure 4, has the same rules as the
stochastic Small Maze with more states and observations.

LoadStart/Stop

Fig. 1. The Load/Unload Task

Goal StartStart

Fig. 2. The M-Maze

1 This formulation of the Load/Unload problem follows [1]. This differs slightly from the for-
mulation given in [8] as the agent receives a reward everytime it loads and unloads rather than
only every time it unloads.

248 N. Welsh and J. Wyatt

G

S

Fig. 3. The Small Maze

G

S S

Fig. 4. The Tunnels Maze

The optimal policy for the deterministic Small Maze has a return of -12.0. To com-
pute an upper bound on the return for the stochastic Small Maze we implemented an
oracle optimal policy – that is, a policy with full knowledge of the true underlying state –
and calculated an average return of -10.0 over 1000 runs. To establish a lower bound we
ran 1000 randomly initialised polices with between one and five internal states, which
had an average return of -681.3. For the Tunnels Maze the estimated upper bound -33.0
is and the lower bound is -917.8. It is important to note that the estimated upper bound
is not obtainable by any policy within the search space. The optimal oracle policies have
complete knowledge of the underlying state of the POMDP. Notice in particular that a
FSC chooses an action based only on the current state of the FSC, so the first action
taken by an FSC must be ignorant of the actual starting state. Hence an FSC cannot be
optimal in either the Small Maze or the Tunnels Maze as both require different actions
according to the randomly determined start state.

All problems have underlying deterministic transitions, except the stochastic Small
Maze and the Tunnels Maze, and a significant degree of aliasing amongst observations.
They all use a ‘flat’ representation; observations are encoded as numbers with no struc-
ture. For the Load/Unload and m-maze problems the observations indicate walls to the
north, south, east, and west of the current position. For the other mazes observations
indicate walls in the eight squares surrounding the current position. This is converted to
a number by calculating all unique observations in the problem, and then assigning each
observation a number. So, for example, in the Load/Unload problem each corner gen-
erates a unique observation, but the three corridor positions have the same observation.
The observations are encoded as 1, 2, and 3 respectively.

5 Experimental Setup and Results

To validate the claims made for our algorithm we ran three groups of experiments:
To show the scalability of our algorithm we ran population simulated annealing on

all the problems given in Section 4. The largest problem tackled by a model-free policy

United We Stand: Population Based Methods for Solving Unknown POMDPs 249

Table 2. Results for scalability experiments. These experiments use perturbation, jumping, and
cloning and demonstrate the effectiveness of the basic algorithm on a variety of problems large
and small, and show the effect of varying the population size.

POP. RUNS MAX MIN µ σ Optimal

LOAD / UNLOAD

10 30 -4.3 -12.9 -5.36 1.57 -4.0

M-MAZE

10 39 -4.0 -14.4 -7.62 2.20 -4.0
20 39 -4.0 -12.2 -7.76 2.04 -4.0
40 40 -4.0 -10.8 -6.67 1.79 -4.0
80 7 -4.0 -8.4 -5.91 1.69 -4.0

SMALL MAZE

10 30 -13.0 -27.2 -17.52 3.39 -12.0
20 27 -12.0 -20.3 -15.80 3.22 -12.0
40 3 -12.5 -12.6 -12.57 0.06 -12.0

STOCHASTIC SMALL MAZE

10 28 -12.3 -26.3 -17.17 3.34 -10.0

TUNNELS

10 30 -38.4 -101.3 -57.41 14.58 -33.0

Table 3. Results showing the effectiveness of information sharing. Experiments compare pertur-
bation and jumping with and without cloning.

VARIANT POP. RUNS MAX MIN µ σ

LOAD / UNLOAD

Information sharing 10 30 -4.3 -12.9 -5.36 1.57
No information sharing 10 35 -4.9 -14.0 -10.09 3.33

M-MAZE

Information sharing 10 39 -4.0 -14.4 -7.62 2.20
No information sharing 10 30 -7.7 -13.7 -9.86 1.48

search method that we are aware of is the 52 state pentagon problem addressed by
[1]. This is roughly the size of our Small Maze, and about one third the size of the
Tunnels Maze. For Load/Unload, the M-Maze, and the Small Maze we also varied the
population size to see how it affected performance. For these runs we used perturbation,
jumping, and cloning. The results are shown in Table 2.

To show that sharing information between members of the population is an important
contribution to the algorithms success we set the probability of cloning to zero for
Load/Unload and the M-Maze, and compare these results to those obtained with cloning
in our scalability experiments above. The results are collected in Table 3. The difference
between both pairs of results is significant at the 0.05 level.

To show that population simulated annealing may be used with existing local search
algorithms from the literature, we implemented the GAPS gradient ascent algorithm
and then ran the following experiments:

250 N. Welsh and J. Wyatt

Table 4. Results comparing GAPS without cloning, to GAPS and GAPS/perturbation hybrid with
cloning. This demonstrates the information sharing algorithm improves existing policy search
algorithms.

VARIANT POP. RUNS MAX MIN µ σ

M-MAZE

GAPS, no information sharing 10 23 -4.0 -9.2 -6.25 1.49
GAPS 10 26 -4.0 -6.9 -5.14 0.81
GAPS and perturbation 10 25 -4.0 -6.8 -4.69 0.86

– We ran simulated annealing with GAPS on the M-Maze, with the probability of
cloning set to zero. This establishes our baseline results. 2

– We re-ran the above experiments with the probability of cloning set to 0.1, jumping
set to 0.05, and probability of GAPS set to 0.85

– We re-ran the above with a hybrid local search: the probability of GAPS was set to
0.425 and the probability of perturbation was set to 0.425.

These results are shown in Table 4. The differences between GAPS with and with-
out information sharing, and between GAPS with information sharing and the hybrid
method are both significant at the 0.05 level.

The hybrid local search deserves some explanation. It has been shown that the initial
gradient estimates for fully connected finite state controllers are often uninformative,
and so gradient ascent may fail [1]. We expect this to occur in our experiments, and we
hypothesise that the hybrid method will outperform pure GAPS by using perturbation
to move to the controller to regions where the gradient is informative.

For all our experiments the initial temperature is 100.0, there are 1000 proposals per
iteration, and return is estimated by averaging over 10 episodes.

For all runs the initial policy has one state, and parameters uniformly set to one. The
number of states may vary between 1 and 5. Annealing is stopped when the temperature
reaches 0.001 or if no new policy is accepted during an iteration. The cooling schedule
is to set the next temperature to 0.9 of the current temperature (geometric cooling). Any
episode that executes for more than 1000 steps without completing the task is halted.

Unless otherwise specified the probability of cloning is 0.10, the probability of jump-
ing a dimension is 0.05, and the policy is perturbed otherwise.

6 Discussion and Related Work

We started this paper by claiming that our population based simulated annealing algo-
rithm was:

– Capable of learning good policies for unknown POMDPs substantially larger than
previously reported in the literature

– More efficient than using equivalent resources to search without sharing informa-
tion

2 The initial policy always has a single state. We maintain a non-zero probability of jumping to
allow the search to vary the number of states.

United We Stand: Population Based Methods for Solving Unknown POMDPs 251

– Compatible with, and can improve the performance of, existing local search tech-
niques such as gradient ascent,

Our experiments have validated all three claims. Results on the Tunnels Maze show
the algorithm is effective for POMDPs three times the size of previously reported re-
sults. The results with and without information sharing clearly show that sharing in-
formation within the population is a more efficient way to search, achieving a higher
mean and lower variance. Our results with GAPS demonstrate that other policy search
methods are compatible with, and improved by information sharing.

The hybrid GAPS/perturbation runs suggest that gradient information can be usefully
combined with the random walks of perturbation to achieve performance better than
either. The hybrid (or Hamiltonian) Monte Carlo method (see, e.g., [7] is a general
framework for such approaches.

Results with varying population size show that increasing the population increases
the mean and decreases the variance. This is unsurprising: the probability of finding a
near optimal solution is directly proportional to amount of effort spent searching, which
in turn is directly proportional to the population size. However, it is worth noting that
our results suggest that a given amount of computing power is better invested in in-
creasing the population size than increasing the number of runs with a given population
size.

It is useful to inspect the learned policies to gain insight into the algorithm. Figure 5
presents a randomly chosen policy learned for the Tunnels Maze. The transition and
emission probabilities have been omitted to reduce the visual complexity. The policy
uses only two states, one for moving up, and another for moving laterally (and most
of the time, moving left). The transitions between states are driven by a few significant
observations. The optimal oracle policy for the Tunnels Maze requires more states than
we allow our policies, however effective policies can still be found by generalising over
the features of the problem; in the case of the Tunnels Maze this means tending to move
left and up. However this particular case does not use the full memory available to, for
example, differentiate between moving left and right.

The closest work to ours is the population based technique explored in [3]. They
report results on 25x25 and 40x40 mazes, but their experimental setup is significantly
different making comparison difficult. The key differences are in their policy represen-
tation. They use a factored representation for observations, and they represent a policy
using a recurrent neural network, which has significantly different properties to a finite
state controller.

10Move Up Move L/R

Fig. 5. An example FSC learned for the Tunnels Maze

252 N. Welsh and J. Wyatt

Policy search ought to scale in the size of the policies rather than the size of the
POMDP. In our algorithm we allow the size to vary so in theory the FSCs might grow
very large. However, since each additional state leads to a quadratic increase in the num-
ber of parameters in the FSC exploring the space of larger models is correspondingly
more difficult. This acts as a pressure to keep the size of the FSCs down. However it
does mean performance could be poor if the problem has a large number of observations
that are relevant to solving the problem. In these situations a factored representation will
help to avoid explosion in the size of the search space.

The members of the population can be seen as samples from a distribution over the
space of FSCs, and the algorithm as a mechanism for fitting that distribution to the
areas with highest return. We might try to place an explicit distribution over the search
space from which we sample. Preliminary experiments with a simple mixture model
that chooses first a number of states, and then transmission and emission parameters
showed that the number of states alone provides no useful information. An alternative
is to use a Dirichlet process prior in the manner of the infinite HMM [2], allowing states
to be shared amongst the population.

References

[1] Aberdeen, D.A.: Policy-Gradient Algorithms for Partially Observable Markov Decision
Processes. Ph.D thesis, The Australian National University (2003)

[2] Beal, M., Ghahramani, Z., Rasmussen, C.E.: The infinite hidden Markov model. In: Ad-
vances in Neural Information Processing Systems, vol. 14, pp. 577–585. MIT Press, Cam-
bridge (2002)

[3] Glickman, M.R., Sycara, K.: Evolutionary search, stochastic policies with memory, and
reinforcement learning with hidden state. In: Proceedings of the Eighteenth International
Conference on Machine Learning, pp. 194–201 (2001)

[4] Kirkpatrick Jr., S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Sci-
ence 220(4598), 671–680 (1983)

[5] Littman, M.L.: Algorithms for Sequential Decision Making. Ph.D thesis, Brown University
(1996)

[6] McCallum, A.: Reinforcement Learning with Selective Perception and Hidden State. Ph.D
thesis, Department of Computer Science, University of Rochester (1995)

[7] Neal, R.M.: Probabilistic inference using Markov chain Monte Carlo methods. Technical
report, Department of Computer Science, University of Toronto (1993)

[8] Peshkin, L., Meuleau, N., Kaelbling, L.P.: Learning policies with external memory. In:
Proceedings of the Sixteenth International Conference on Machine Learning, pp. 307–314
(1999)

[9] Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: An anytime algorithm for
POMDPs. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 1025–
1032 (2003)

[10] Strens, M.J.A., Moore, A.W.: Direct policy search using paired statistical tests. In: Proc.
18th International Conf. on Machine Learning, pp. 545–552. Morgan Kaufmann, San Fran-
cisco (2001)

New Error Bounds for Approximations
from Projected Linear Equations

Huizhen Yu1 and Dimitri P. Bertsekas2

1 Helsinki Institute for Information Technology (HIIT)
University of Helsinki, Finland
janey.yu@cs.helsinki.fi

2 Laboratory for Information and Decision Systems (LIDS)
M.I.T., Cambridge, MA 02139, USA

dimitrib@mit.edu

Abstract. We consider linear fixed point equations and their approx-
imations by projection on a low dimensional subspace. We derive new
bounds on the approximation error of the solution, which are expressed
in terms of low dimensional matrices and can be computed by simula-
tion. When the fixed point mapping is a contraction, as is typically the
case in Markovian decision processes (MDP), one of our bounds is always
sharper than the standard worst case bounds, and another one is often
sharper. Our bounds also apply to the non-contraction case, including
policy evaluation in MDP with nonstandard projections that enhance
exploration. There are no error bounds currently available for this case
to our knowledge.

1 Introduction

For a given n× n matrix A and vector b ∈ n, let x∗ and x̄ be solutions of the
two linear fixed point equations,

x = Ax+ b , x = Π(Ax+ b) , (1)

respectively, where Π denotes projection on a k-dimensional subspace S with
respect to certain weighted Euclidean norm ‖ · ‖ξ. We assume that x∗ and x̄
exist, and that the matrix I −ΠA is invertible so that x̄ is unique.

Implicit here is the assumption that n is very large, so that n-dimensional
vector-matrix operations are practically impossible, while k << n. Our objective
in solving the projected equation x = Π(Ax+b) is to approximate the solution of
the original equation x = Ax+ b using k-dimensional computations and storage.
This approach is common in MDP, where A is a stochastic or substochastic
matrix, and simulation-based approximate policy evaluation methods, based on
temporal differences (TD), have been successfully used (see e.g., [2,8,9,10]). In
our recent paper [3], we have extended these methods to the case where A is an
arbitrary matrix, subject only to the restriction that I −ΠA is invertible.

In the MDP context, where ΠA is usually a contraction, there are two com-
monly used error bounds that compare the norms of x∗ − x̄ and x∗ −Πx∗. The

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 253–267, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

254 H. Yu and D.P. Bertsekas

first bound (see e.g., [2,10]) holds if ‖ΠA‖ = α < 1 with respect to some norm
‖ · ‖, and has the form

‖x∗ − x̄‖ ≤ 1
1− α‖x

∗ −Πx∗‖ . (2)

The second bound (see e.g., [11,1]) holds in the usual case where ΠA is a con-
traction with respect to the Euclidean norm ‖ · ‖ξ, with ξ being the invariant
distribution of the Markov chain underlying the problem, i.e., ‖ΠA‖ξ = α < 1. It
is derived using the Pythagorean theorem ‖x∗−x̄‖2ξ = ‖x∗−Πx∗‖2ξ+‖x̄−Πx∗‖2ξ,
and it is much sharper than the first bound:

‖x∗ − x̄‖ξ ≤
1√

1− α2
‖x∗ −Πx∗‖ξ . (3)

The bounds (2), (3) are determined by the modulus of contraction α, and apply
only when ΠA is a contraction mapping. We develop in this paper new error
bounds, which are sharper when ΠA is a contraction, including important MDP
cases, and also apply when ΠA is not a contraction.

Our starting point is the observation that the two terms involved in the bounds
(2) and (3) satisfy the following equation with or without contraction assump-
tions:1

x∗ − x̄ = (I −ΠA)−1(x∗ −Πx∗) . (4)

We may view the bounds (2), (3) as relaxed versions of this equation. In partic-
ular, we may obtain the bound (2) by writing (I −ΠA)−1 = I +ΠA+ · · · , and
by upper-bounding each term in the expansion separately: ‖(ΠA)n‖ ≤ αn. We
may obtain the bound (3) by writing

(I −ΠA)−1 = I +ΠA(I −ΠA)−1 , (5)

and by upper-bounding the norm of ΠA(I −ΠA)−1(x∗ −Πx∗) by α‖x∗ − x̄‖ξ

and rearranging terms.2 We will develop a different bounding approach, so that
α will not be in the denominator of the bound. To this end, we will express
(I −ΠA)−1 in the form

(I −ΠA)−1 = I + (I −ΠA)−1ΠA , (6)

1 This can be seen by subtracting x̄ = Π(Ax̄ + b) from Πx∗ = Π(Ax∗ + b) to obtain

Πx∗ − x̄ = ΠA(x∗ − x̄) , ⇒ (Πx∗ − x∗) + (x∗ − x̄) = ΠA(x∗ − x̄) , ⇒ (4).

2 From Eqs. (4)-(5) and the orthogonality of (x∗ − Πx∗) to the subspace S, we have

‖x∗ − x̄‖2
ξ = ‖x∗ − Πx∗‖2

ξ + ‖ΠA(I − ΠA)−1(x∗ − Πx∗)‖2
ξ

= ‖x∗ − Πx∗‖2
ξ + ‖ΠA(x∗ − x̄)‖2

ξ ≤ ‖x∗ − Πx∗‖2
ξ + α2‖x∗ − x̄‖2

ξ .

New Error Bounds for Approximations from Projected Linear Equations 255

and aim at bounding the term (I −ΠA)−1ΠA(x∗ −Πx∗) directly (this term is
in fact Πx∗− x̄, the bias of x̄ from Πx∗). In doing so, we will obtain bounds that
not only can be sharper than the preceding bounds for the contraction case, but
also carry over to the non-contraction case.

We will derive two bounds, which involve the spectral radii of small-size ma-
trices, and provide a “data/problem-dependent” error analysis, in contrast to
the fixed error bounds (2), (3); see Theorems 1 and 2. The bounds are inde-
pendent of the parametrization of the subspace S, and can be computed with
low-dimensional operations and simulation, if this is desirable. One of the bounds
is sharper than the other, but involves more complex computations. We also have
some additional bounds that provide insight into the character of the approxi-
mation error, but are qualitative in nature; they are given in an extended version
of this paper [12].

Our bounds have the general form

‖x∗ − x̄‖ξ ≤ B(A, ξ, S) ‖x∗ −Πx∗‖ξ , (7)

where B(A, ξ, S) is a constant that depends on A, ξ, and S (but not on b). Like
the bounds (2), (3), we may view ‖x∗ − Πx∗‖ξ as the baseline error , i.e., the
minimum error in estimating x∗ by a vector in the approximation subspace S.
We may view B(A, ξ, S) as an upper bound to the amplification ratio, ‖x∗ −
x̄‖ξ/‖x∗−Πx∗‖ξ, which is due to solving the projected equation x = Π(Ax+ b)
instead of projecting x∗ on S (or equivalently, view

√
B2(A, ξ, S)− 1 as an upper

bound to the “bias-to-distance” ratio ‖x̄−Πx∗‖ξ/‖x∗ −Πx∗‖ξ).
We present our main results in the next section. In Section 3, we address the

application of the new error bounds to the approximate policy evaluation in MDP
and to the far more general problem of approximate solution of large systems of
linear equations. Due to space limitation, proofs and additional related analysis
are omitted; they can be found in the expanded version of the present paper [12].

2 Main Results

We first introduce the main theorems and explain the underlying ideas. Let Φ
be an n×k matrix whose columns form a basis of S. Let Ξ be a diagonal matrix
with ξ on the diagonal. Define k × k matrices B, M , and F by

B = Φ′ΞΦ , M = Φ′ΞAΦ , F = (I −B−1M)−1 (8)

(we will show later that the inverse in the definition of F exists). Notice that
the projection matrix Π can be expressed as Π = Φ(Φ′ΞΦ)−1Φ′Ξ = ΦB−1Φ′Ξ.
For a square matrix L, let σ(L) denote the spectral radius of L.

Theorem 1. The approximation error x∗ − x̄ satisfies

‖x∗ − x̄‖ξ ≤
√

1 + σ(G1)‖A‖2ξ ‖x∗ −Πx∗‖ξ , (9)

256 H. Yu and D.P. Bertsekas

where G1 is the k × k matrix

G1 = B−1F ′BF . (10)

Furthermore, σ(G1) = ‖(I − ΠA)−1Π‖2ξ, so the bound (9) is invariant to the
choice of basis vectors of S (i.e., Φ).

The idea in deriving Theorem 1 is to combine Eqs. (4)-(5) with the bound∥∥(I −ΠA)−1ΠA(x∗ −Πx∗)
∥∥

ξ
≤
∥∥(I −ΠA)−1Π

∥∥
ξ
‖A‖ξ ‖x∗ −Πx∗‖ξ ,

and to show that ‖(I −ΠA)−1Π‖2ξ = σ(G1). An important fact, to be demon-
strated later, is that G1 can be obtained by simulation, using low dimensional
calculations.

While the bound of Theorem 1 can be conveniently computed, it is less sharp
than the bound of the subsequent Theorem 2, and under certain circumstances
less sharp than the bound (3). In Theorem 1, ‖A‖ξ is needed, and this can be
a drawback, particularly for the non-contraction case. In Theorem 2, ‖A‖ξ is
no longer needed; A is absorbed into the matrix to be estimated. Furthermore,
Theorem 2 takes into account that x∗ −Πx∗ is perpendicular to the subspace
S; this considerably sharpens the bound. On the other hand, the sharpened
bound of Theorem 2 involves a k× k matrix R (defined below) in addition to B
and M , which may not be straightforward to estimate in some cases, as will be
commented later.

Theorem 2. The approximation error x∗ − x̄ satisfies

‖x∗ − x̄‖ξ ≤
√

1 + σ(G2) ‖x∗ −Πx∗‖ξ , (11)

where G2 is the k × k matrix

G2 = B−1F ′BFB−1(R−MB−1M ′) , (12)

and R is the k × k matrix

R = Φ′ΞAΞ−1A′ΞΦ .

Furthermore, σ(G2) = ‖(I−ΠA)−1ΠA(I−Π)‖2ξ, so the bound (11) is invariant
to the choice of basis vectors of S (i.e., Φ).

The idea in deriving Theorem 2 is to combine Eqs. (4)-(5) with the bound∥∥(I −ΠA)−1ΠA(x∗ −Πx∗)
∥∥

ξ
=
∥∥(I −ΠA)−1ΠA(I −Π)(x∗ −Πx∗)

∥∥
ξ

≤
∥∥(I −ΠA)−1ΠA(I −Π)

∥∥
ξ
‖x∗ −Πx∗‖ξ ,

and to show that ‖(I −ΠA)−1ΠA(I −Π)‖2ξ = σ(G2). Incorporating the matrix
I −Π in the definition of G2 is crucial for improving the bound of Theorem 1.

Estimating the matrix R, although not always as straightforward as estimat-
ing B and M , can be done for a number of applications. A primary exception is
when A itself is an infinite sum of powers of matrices, which is the case of the
TD(λ) method with λ > 0. We will address these issues in Section 2.3.

New Error Bounds for Approximations from Projected Linear Equations 257

2.1 Key Arguments for Proofs

Due to space limitation, we omit the proofs and only point out the main proof
arguments. We shall need two technical lemmas. The first lemma introduces an
expression of the matrix (I−ΠA)−1 that will be used to derive our error bounds.
The second lemma establishes the relation between the norm of an n×n matrix
that is a product of n×k and k×n matrices, and the spectral radius of a certain
product of k × k matrices.

Lemma 1. The matrix I − ΠA is invertible if and only if the inverse (I −
B−1M)−1 defining F exists. When I − ΠA is invertible, (I − ΠA)−1 maps S
onto S, and furthermore,

(I −ΠA)−1 = I + (I −ΠA)−1ΠA = I + ΦFB−1Φ′ΞA . (13)

Note that since B andM are low-dimensional matrices, the first part of Lemma 1
is useful for verifying the existence of the inverse of I −ΠA using the data.

Lemma 2. Let H and D be an n × k and k × n matrix, respectively. Let ‖ · ‖
denote the standard (unweighted) Euclidean norm. Then,

‖HD‖2ξ = ‖Ξ1/2HDΞ−1/2‖2 = σ
(
(H ′ΞH)(DΞ−1D′)

)
. (14)

Theorems 1 and 2 can now be proved by combining Lemmas 1 and 2, the rela-
tion (4), and the proof ideas described immediately after the statements of the
theorems.

2.2 Comparison of Error Bounds

The error bounds of Theorems 1 and 2 apply to the general case where ΠA is
not necessarily a contraction mapping, while the worst case error bounds (2) and
(3) only apply when ΠA is a contraction. We will thus compare them for the
contraction case. Nevertheless, our discussion will illuminate the strengths and
weaknesses of the new bounds for both contraction and non-contraction cases.

First it can be shown that the error bound of Theorem 2 is always the sharpest.

Proposition 1. Assume that ‖ΠA‖ξ ≤ α < 1. Then, the error bound of Theo-
rem 2 is always no worse than the error bound (3), i.e., 1+σ(G2) ≤ 1/(1−α2) ,
where G2 is given by Eq. (12).

It can also be shown that the error bound of Theorem 2 is tight in the sense
that there is a worst case choice of b for which the bound holds with equality.

Let us compare now the error bound of Theorem 1 with the bounds (2) and
(3) from the worst case viewpoint. Since Theorem 1 is effectively equivalent to∥∥(I −ΠA)−1ΠA(x∗ −Πx∗)

∥∥
ξ
≤

∥∥(I −ΠA)−1Π‖ξ‖A‖ξ‖x∗ −Πx∗
∥∥

ξ
,

we see that the bound of Theorem 1 is never worse than the bound (2), because
we have bounded the norm of the matrix (I −ΠA)−1Π as a whole, instead of
bounding each term in its expansion separately as in the case in the bound (2).
However, the bound of Theorem 1 can be degraded by two over-relaxations:

258 H. Yu and D.P. Bertsekas

(i) The residual vector x∗−Πx∗ is special, in that it satisfies Π(x∗−Πx∗) = 0,
but the bound does not use this fact.

(ii) When ΠA is zero or near zero, the bound cannot fully utilize this fact.

The effect of (i) can be quite significant when A has a dominant real eigenvalue
β with an eigenvector x that lies in the approximation subspace S. In such a
case, the bound reduces essentially to the bound (2), since

‖(I −ΠA)−1Πx‖ξ = 1
1−β ‖x‖ξ . (15)

This happens because the analysis has not taken into account that the residual
vector (x∗ −Πx∗) cannot be an eigenvector that is contained in S.

The relaxation related to (ii) may not look obvious in the current analysis; it
does, however, in an alternative equivalent form of the analysis, by noticing that

(I −ΠA)−1ΠA = ΠA+ΠA(I −ΠA)−1ΠA , (16)

and the norm of the matrix on the right has been bounded by ‖Π + ΠA(I −
ΠA)−1Π‖ξ‖A‖ξ in Theorem 1. When ΠA = 0 the matrix of Eq. (16) is zero
but its bound is not, because the matrices Π and A are split in the bounding
procedure. Accordingly, the spectral radius σ(G1) becomes ‖Π‖2ξ = 1. Similarly,
over-relaxation occurs when ΠA is not zero but is near zero.3

The two shortcomings of the bound of Theorem 1 arise in the MDP appli-
cations that we will discuss, as well as in non-contraction cases. On the other
hand, there are cases where Theorem 1 provides sharper bounds than the fixed
error bound (3), and cases where Theorem 1 gives computable bounds while the
bound (3) is qualitative (for example, when the modulus of contraction of ΠA is
unknown). We also mention that the expanded version of this paper [12] contains
additional analysis, which in part addresses the shortcomings just discussed.

The advantage that the bound of Theorem 1 holds over the one of Theorem 2
is that it is rather easy to compute: the matrices B and M define the solution
x̄, so the bound is obtained together with the approximating solution without
extra computation overhead. By contrast, the bound of Theorem 2 involves the
matrix R, which can be hard to estimate for certain applications.

2.3 Estimating the Low Dimensional Matrices in the Bounds

We consider estimating the k×k matrices involved in the bounds by simulation,
and we focus on estimating the matrix R in Theorem 2:

R = Φ′ΞAΞ−1A′ΞΦ .

Other cases do not seem to need explanations: the estimation of B and M
using simulation has been well explained in the literature (see eg., [3,4,7]); and
if instead of using simulation, products of k × n and n × n matrices can be
3 In practice, when using the bound of Theorem 1, one may check if ΠA is near zero

by checking if M is.

New Error Bounds for Approximations from Projected Linear Equations 259

computed directly, then the calculation of R may be done directly with common
matrix algebra.

First, let us note that when the matrix Φ actually used in the simulation
does not have full rank, Theorems 1 and 2 imply that the bounds can be com-
puted by using the pseudo-inverse of B, neglecting zero eigenvalues (a tolerance
level/threshold needs to be determined, of course, in the simulation context).

Without loss of generality, in this subsection, we assume that
∑n

i=1 ξi = 1 so
that ξ can be viewed as a distribution. In practice, we never need to normalize ξ
as the normalization constant will be canceled in the product defining the ma-
trices G1 and G2. Let φ(i)′ denote the i-th row of Φ. Our methods for estimating
R are based on a common procedure: we first express R as a summation of k×k
matrices, e.g.,

R =
∑
i,j,ĵ

(ajiaĵi) ·
ξjξĵ

ξi
· φ(j)φ(ĵ)′ ,

and guided by this expression, we generate samples and choose proper weights
for them, so that each term in the summation is matched by a weighted long-run
average of respective samples.

We will give four examples that apply to different contexts, depending on
whether the entries of ξ and A in the preceding formula for R are explicitly
known or not, with two main applications in our mind:

(i) General linear equations in which we know explicitly the entries of A, and we
may want to choose a particular projection norm, for instance, the standard
Euclidean norm (all entries of ξ being equal). The procedure of Example 1
and its slight variant in Example 2 refer primarily to this case.

(ii) Markov decision processes in which we do not know A, but we can generate
samples by simulation of a certain Markov chain underlying the problem.
Examples 3 and 4 are mostly relevant to this case, including in particular,
evaluating the cost or Q-factors of a policy using TD(0)-like algorithms,
with and without exploration enhancements. (We refer to our paper [3] for
some algorithms involving exploration, where the simulation procedures of
Examples 3 and 4 may apply.)

Example 1. Both ξ and A are known explicitly. We express R as the summation
given above and generate a sequence of triple indices (it, jt, ĵt) as follows. We
generate the sequence (i0, i1, . . .) so that its empirical distribution converges to
ξ. At it, we generate two mutually independent transitions (it, jt) and (it, ĵt)
according to a certain transition probability matrix P with pij �= 0 whenever
aji �= 0. We then define Rt by

Rt =
1

t+ 1

t∑
m=0

(
ajmim

pimjm
· aĵmim

pimĵm

)
· ξjm ξĵm

ξ2
im

· φ(jm)φ(ĵm)′ ,

where t is a suitably large number, and approximate R by the symmetrized
matrix (Rt + R′

t)/2. Note that in the special case where Ξ = 1
nI, the indices

260 H. Yu and D.P. Bertsekas

it can be generated independently with the uniform distribution, R reduces to
1
nΦ

′AA′Φ, and the ratio
ξjm ξĵm

ξ2
im

in Rt reduces to 1. �

Example 2. The weight vector ξ is not known explicitly, but A is; moreover, a
sequence (i0, i1, . . .) can be generated so that its empirical distribution converges
to ξ. For example, ξ may be the unique invariant distribution of a Markov chain,
which is used to generate the sequence (i0, i1, . . .). In this case, we can keep
tracking the empirical distribution ξ̂t of the sequence it up to time t. We then
apply the same sampling and estimation schemes as in Example 1, replacing the

ratio
ξjm ξĵm

ξ2
im

in Rt by
ξ̂t,jm ξ̂t,ĵm

ξ̂2
t,im

. �

Example 3. Both ξ and A are not known explicitly; moreover, the ratios βij =
aij/pij are known for a certain transition matrix P with pij �= 0 whenever
aij �= 0, and ξ is the unique invariant distribution of the Markov chain associated
with P . While P is not explicitly known, it is assumed that a simulator is
available that can generate transitions according to P .

To estimate R, we first express it as

R =
∑
i,l,j

(βilβjl) ·
(
ξipil · pjlξj

ξl

)
· φ(i)φ(j)′ .

Noticing that pjlξj

ξl
equals the steady-state conditional probability P (Xt−1 =

j | Xt = l) for the Markov chain Xt, we thus generate a sequence of pairs of
indices (it, jt) as follows. Let (i0, i1, . . .) be a trajectory of the Markov chain. At
it+1 = l, we generate, using the uniform distribution, one sample (j, l) from the
set of past transitions to l, {(itk−1, itk

) | itk
= l, tk ≤ t + 1}, and we let jt = j.

(Indeed, this will also work if we simply let jt = itk−1 where tk is the most recent
time prior to t+ 1 that itk

= l.) It can be seen that the conditional probability
of jt given it+1 converges asymptotically to

pjtit+1ξjt

ξit+1
. We then define Rt by

Rt =
1

t+ 1

t∑
m=0

(βimim+1βjmim+1) · φ(im)φ(jm)′ ,

and we approximate R by the symmetrized matrix (Rt +R′
t)/2.

If the Markov chain is reversible, i.e., ξjpjl = ξlplj for all j, l, then the method
can be substantially simplified. We can omit the procedure of generating jt and
simply set jm = im+2 in Rt, because if we do so, the proper weight for the sample
is

ξjm pjmim+1
ξim+1pim+1jm

= 1. �

Example 4. The weight vector ξ is known explicitly, but A is not; moreover, the
ratios βij = aij/pij are known for a certain transition matrix P with pij �= 0
whenever aij �= 0. Here, ξ need not be the invariant distribution of P .

We can deal with this case by combining partially the schemes in Examples
2 and 3. We express R and generate a sequence of pairs of indices (it, jt) as in

New Error Bounds for Approximations from Projected Linear Equations 261

Example 3. We keep tracking the empirical distribution κt of the sequence it up
to time t, to approximate the invariant distribution of P . We weight samples
properly to define Rt:

Rt =
1

t+ 1

t∑
m=0

(βimim+1βjmim+1) ·
(

ξim ξjm

ξim+1
· κt,im+1

κt,im κt,jm

)
· φ(im)φ(jm)′ ,

and we approximate R by the symmetrized matrix (Rt +R′
t)/2.

If the Markov chain associated with P is reversible, then there is simplification,
similar to that in Example 3. We simply set jt = it+2 and

Rt =
1

t+ 1

t∑
m=0

(βimim+1βim+2im+1) ·
(

ξim ξim+2
ξim+1

· κt,im+1
κt,imκt,im+2

)
· φ(im)φ(im+2)′ ,

because the extra term needed for weighting the sample properly is
κt,jm pjmim+1

κt,im+1pim+1jm
, which converges to 1 as m→∞. �

A main source of difficulty in the estimation of R in MDP, as Examples 3 and 4
illustrate, is the unknown matrix A and the need of samples of “backward” tran-
sitions from a common state/index. Simulating backward transitions according
to the steady-state conditional distribution is in general not easy. Consistently,
as Example 1 illustrates, the estimation of R is quite simple when backward
transitions can be easily generated, such as when A is known. A second source
of difficulty in the estimation of R, as Examples 2-4 illustrate, is the memory
demand. In particular, in order to either generate backward transitions or to
weight samples properly, we must keep track of the past history of the simula-
tion (except in the case of Example 3 and a reversible Markov chain).

Another drawback of the procedures given in Examples 1-4 is that they do
not adapt easily to the case where A itself is a summation of infinitely many
matrices, as in TD(λ) with λ > 0.

3 Applications

We consider two applications of Theorems 1 and 2. The first one is cost func-
tion approximation in MDP with TD-type methods. This includes single policy
evaluation with discounted and undiscounted cost criteria. The second applica-
tion is approximately solving large general systems of linear equations. We also
illustrate with figures various issues discussed in Section 2.2 on the comparison
of the bounds. We note that for TD(λ) with λ > 0, we do not yet have an
efficient simulation-based method for estimating the bound of Theorem 2; we
have calculated the bound using common matrix algebra, and we plot it just for
comparison.

3.1 Cost Function Approximation for MDP

For policy evaluation in MDP, x∗ is the cost function of the policy to be evalu-
ated. Let P be the transition matrix of the Markov chain induced by the policy.

262 H. Yu and D.P. Bertsekas

The original linear equation that we want to solve is the Bellman equation, or
optimality equation, satisfied by x∗. It takes the form

x∗ = b + αPx∗ ,

where b is the per-stage cost vector, and α ∈ [0, 1] is the discount factor: α ∈ [0, 1)
corresponds to the discounted cost criterion, while α = 1 corresponds to either
the total cost criterion or the average cost criterion (in the latter case b is the
per-stage cost minus the average cost). For simplicity of discussion, we assume
that the Markov chain is irreducible.

With the TD(λ) method, we solve a projected form of the multistep Bellman
equation x = Πb+ΠAx, where A is defined for a pair of values (α, λ) by

A = P (α,λ) def
= (1 − λ)

∞∑
l=0

λl(αP)l+1

with either α ∈ [0, 1), λ ∈ [0, 1], or α = 1, λ ∈ [0, 1). Notice that the case λ = 0
corresponds to A = αP .

Discounted Problems. Consider the discounted case: α < 1. For λ ∈ [0, 1],
with ξ being the invariant distribution of the Markov chain, the modulus of
contraction of P (α,λ) with respect to ‖ · ‖ξ is

‖P (α,λ)‖ξ =
(1− λ)α
1− λα .

Let e denote the constant vector of all ones. Like P , the matrix P (α,λ) has e as
an eigenvector associated with the dominant eigenvalue (1−λ)α

1−λα .
If the approximation subspace S contains or nearly contains e, the bound of

Theorem 1 can degrade to the worst case error bound given by (2), as remarked
in Section 2.2. In such a case, in order to have a sharper bound for the approx-
imation of Πx∗, we can estimate separately the projection of x∗ on e and the
projection of x∗ on another subspace Ŝ = (S ⊕ e) ∩ e⊥, which is the orthogonal
complement of e in S ⊕ e (see Figure 1), and redefine x̄ as the sum of the two
estimates. It can be shown that when the first projection can be estimated with
no bias, the error bound for the second projection carries over to the combined
estimate x̄.4 Fortunately, for MDP, the projection of x∗ on e can be calculated

4 For a subspace V , let ΠV denote the projection on V . Let V and W be two orthogonal
subspaces with ΠV x∗ known. Since x∗−ΠV x∗ satisfies the linear equation x = Ax+b̃
with b̃ = b + AΠV x∗ − ΠV x∗, to obtain an estimate of ΠW x∗ = ΠW (x∗ − ΠV x∗),
we can solve the projected equation x = ΠW Ax+ΠW b̃. (In the above MDP case, V
is an eigenspace of A, so b̃ can be replaced by b.) Denote the solution by x̄w. Then,
error bounds for x̄w that are of the form ‖(x∗ −ΠV x∗)− x̄w‖ξ ≤ L‖(x∗ −ΠV x∗) −
ΠW (x∗ − ΠV x∗)‖ξ , are equivalent to error bounds ‖x∗ − x̄‖ξ ≤ L‖x∗ − ΠV ⊕W x∗‖ξ

with x̄ = ΠV x∗ + x̄w.

New Error Bounds for Approximations from Projected Linear Equations 263

S

̂S

e

Fig. 1. Illustration of bS, the orthogonal complement of e in S⊕e, i.e., bS = (S⊕e)∩e⊥

asymptotically exactly through simulation.5 In addition, basis vectors of Ŝ can
also be generated from Φ by using simulation (see eg., [5]), along with the ap-
proximation of the matrices B and M and without incurring much computation
overhead. Figure 2 illustrates the error bounds, and shows how the use of Ŝ may
improve them. It can be observed that the bound of Theorem 2 has consistently
performed best, as indicated by the analysis.

Figure 3 compares the bounds for the case where the projection norm is the
standard unweighted Euclidean norm. The standard bounds and the bound of
Theorem 1 need the value ‖A‖, while the bound of Theorem 2 does not. For
comparison of these bounds, we compute ‖P‖ using the knowledge of P , bound
‖A‖ by (1−λ)‖αP‖

1−λ‖αP‖ , and plug the latter in the standard bounds and the bound
of Theorem 1. The value ‖αP‖, which corresponds to ‖A‖ for λ = 0, is shown
in the titles of Figure 3. With the norm being different from ‖ · ‖ξ, the mapping
ΠA is not necessarily a contraction for small values of λ, even though in this
example it is.

Note that the availability of computable error bounds for non-contraction
mappings facilitates the design of policy evaluation algorithms with improved
exploration. In particular, we can use the LSTD algorithm [4] to evaluate the
cost or the Q-factor of a policy using special sampling methods that enhance ex-
ploration, and use the bound of Theorem 1 to estimate the corresponding ampli-
fication ratio.6 Alternatively, we may use the bound of Theorem 2 in conjunction
with TD(0)-type algorithms. Examples 3 and 4 show how to estimate the matrix
R in cases where the projection norm is determined by an exploration policy,
and where the projection norm is given explicitly with the desirable weights,
respectively.
5 It can be seen that the projection of x∗ on e equals

ξ′x∗ = ξ′b + ξ′P (α,λ)x∗ = ξ′b +
(1 − λ)α
1 − λα

ξ′x∗, ⇒ ξ′x∗ =
1 − λα

1 − α
ξ′b .

6 When ΠA is not necessarily a contraction, a bound on ‖A‖ξ is needed to apply
Theorem 1. There are also algorithms involving exploration and maintaining the
contraction property of ΠA, for which we refer to our paper [3].

264 H. Yu and D.P. Bertsekas

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100
α = 0.99, λ ∈ [0, 1]

λ

B
ou

nd

Standard I
Standard II
Thm. 1, S
Thm. 1, Ŝ

(a) Standard bounds vs. Theorem 1

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8
α = 0.99, λ ∈ [0, 1]

λ

B
ou

nd

Standard II
Thm. 2, S
Thm. 1, Ŝ
Thm. 2, Ŝ

(b) Standard bounds vs. Theorems 1 & 2
[detail of lower portion of (a)]

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100
α = 0.99, λ ∈ [0, 1]

λ

B
ou

nd

Standard I
Standard II
Thm. 1, S
Thm. 1, Ŝ

(c) Standard bounds vs. Theorem 1

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20
α = 0.99, λ ∈ [0, 1]

λ

B
ou

nd

Standard II
Thm. 2, S
Thm. 1, Ŝ
Thm. 2, Ŝ

(d) Standard bounds vs. Theorems 1 & 2
[detail of lower portion of (a)]

Fig. 2. Comparison of error bounds as functions of λ for two discounted problems with
randomly generated Markov chains. The dimension parameters are n = 200, k = 50,
and the weights ξ in the projection norm is the invariant distribution. Standard I and
II refer to the worst case bounds (2) and (3), respectively. The Markov chain is the
same in (a) and (b), and in (c) and (d). In (c) and (d), the Markov chain has a “noisy”
block structure with two blocks, thus P has a relatively large subdominant eigenvalue;
S is chosen to contain e and a vector close to an eigenvector associated with that
subdominant eigenvalue. The subspace bS is derived from S by orthogonalization, as
shown in Figure 1.

Average Cost and Stochastic Shortest Path (SSP) Problems. In the
average cost case (similarly for SSP), x∗ is the differential cost or bias vector
and it is orthogonal to e. Let us assume that S is orthogonal to e, to simplify

New Error Bounds for Approximations from Projected Linear Equations 265

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180
α = 0.99, ‖αP ‖ = 0.995, λ ∈ [0, 1]

λ

B
ou

nd

Standard I
Standard II
Thm. 1, S
Thm. 1, Ŝ

(a) Standard bounds vs. Theorem 1

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

9

10
α = 0.99, ‖αP ‖ = 0.995, λ ∈ [0, 1]

λ

B
ou

nd

Standard II
Thm. 2, S
Thm. 1, Ŝ
Thm. 2, Ŝ

(b) Standard bounds vs. Theorems 1 & 2
[detail of lower portion of (a)]

Fig. 3. Comparison of error bounds for discounted problems. The setup is the same
as that for Figure 2, except that the projection norm is the standard Euclidean norm.
The Markov chain has a “noisy” block structure. The subspace S is chosen randomly.

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

1.6

1.8

2
α = 1, λ ∈ [0, 1)

λ

B
ou

nd

Thm. 1, Ŝ
Thm. 2, Ŝ

(a) Theorem 1 vs. Theorem 2

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
α = 1, λ ∈ [0, 1)

λ

B
ou

nd

Thm. 1, Ŝ
Thm. 2, Ŝ

(b) Theorem 1 vs. Theorem 2

Fig. 4. Comparison of error bounds for average cost problems with randomly generated
Markov chains. The setup is the same as that for Figure 2. In (b), the Markov chain
has a “noisy” block structure, and S is chosen as in Figure 2(c).

the discussion. The error bound corresponding to the bound (3), and given by
Tsitsiklis and Van Roy [11] is

‖x∗ − x̄‖ξ ≤
1√

1− α2
λ

‖x∗ −Πx∗‖ξ ,

where αλ < 1 and αλ → 0 as λ → 1. Here, αλ can be viewed as the modulus
of contraction of some mapping that is a damped version of ΠA, while αλ → 0
reflects the fact that the matrixΠA converges to the zero matrix (as A converges

266 H. Yu and D.P. Bertsekas

to eξ′) as λ → 1. Note that the factor in the bound converges to 1, as λ → 1.
This bound is qualitative, as usually the value of αλ is unknown.

Figure 4 shows the bounds of Theorems 1 and 2. Notice that as λ → 1, the
bound of Theorem 1 converges to

√
2 instead of 1. This is due to the over-

relaxation in the analysis for the case where ΠA is near zero, as remarked in
Section 2.2. Notice also in Figure 4(b) that the bound of Theorem 1 is affected
by the relation of S to the eigenspace of A associated with eigenvalues that are
close to 1, similar to the discounted case. By contrast, the bound of Theorem 2
performs well.

3.2 Large General Systems of Linear Equations

For solving large general systems of linear equations using the projected equation
approach [3], the bound of Theorem 2 can be computed in a straightforward
way (except in the case of TD(λ) with λ > 0), as shown in Examples 1 and 2.
Theorem 2 is not only much sharper than Theorem 1 for this case, but also more
convenient, because it does not require the knowledge of ‖A‖ξ. Note that we can
write linear equations of the form Lx = q as x = Ax + b, with A = I + cL and
b = −cq for any scalar c, and we can choose c to optimize the corresponding
error bound.

4 Discussion

We have considered the projected equation approximation approach, and we have
presented new data-dependent computable error bounds that hold for both con-
traction and non-contraction mappings. Their applicability for non-contraction
mappings is not only useful for approximating solutions of general linear equa-
tions, but is also useful in the context of MDP for designing exploration mech-
anisms. Furthermore, in the context of MDP, these bounds can be used in per-
formance bounds for approximate policy iteration, such as [6].

One potential use of our bounds is to suggest changes in the projected equa-
tion in order to reduce the amplification ratio. For example, extensive computa-
tional experience with TD(λ) methods suggests that the simulation noise tends
to increase as λ increases, so there is motivation to use small values of λ as
long as the amplification ratio is close to 1. Unfortunately, the bounds (2), (3)
are too conservative to provide useful information about the amplification ratio,
and our bounds can provide quantitative guidance as well as valuable insight in
this regard. Furthermore, our bounds can be similarly used in the general non-
contraction context, in conjunction with simulation-based TD(λ)-like algorithms
that have been developed in our recent paper [3]. There may be other potential
uses of our bounds, for example in suggesting changes to the choice of approxi-
mation subspace, thereby affecting both the baseline error and the amplification
ratio, but this is a subject for future research.

Acknowledgment. Huizhen Yu is supported in part by Academy of Finland
grant 118653 (ALGODAN) and by the IST Programme of the European Com-
munity, PASCAL Network of Excellence, IST-2002-506778.

New Error Bounds for Approximations from Projected Linear Equations 267

References

1. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 3rd edn., vol. II.
Athena Scientific, Belmont (2007)

2. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific,
Belmont (1996)

3. Bertsekas, D.P., Yu, H.: Projected equation methods for approximate solution of
large linear systems. J. Computational and Applied Mathematics (to appear, 2008)

4. Boyan, J.A.: Least-squares temporal difference learning. In: Proc. of the 16th Int.
Conf. Machine Learning (1999)

5. Konda, V.R.: Actor-Critic Algorithms. Ph.D thesis. MIT, Cambridge (2002)
6. Munos, R.: Error bounds for approximate policy iteration. In: Proc. The 20th Int.

Conf. Machine Learning (2003)
7. Nedić, A., Bertsekas, D.P.: Least squares policy evaluation algorithms with linear

function approximation. Discrete Event Dyn. Syst. 13, 79–110 (2003)
8. Sutton, R.S.: Learning to predict by the methods of temporal differences. Machine

Learning 3, 9–44 (1988)
9. Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press, Cambridge (1998)

10. Tsitsiklis, J.N., Van Roy, B.: An analysis of temporal-difference learning with func-
tion approximation. IEEE Trans. Automat. Contr. 42(5), 674–690 (1997)

11. Tsitsiklis, J.N., Van Roy, B.: Average cost temporal-difference learning. Automat-
ica 35(11), 1799–1808 (1999)

12. Yu, H., Bertsekas, D.P.: New error bounds for approximations from projected linear
equations. Technical Report C-2008-43, University of Helsinki (2008)

Markov Decision Processes with Arbitrary
Reward Processes

Jia Yuan Yu1, Shie Mannor1, and Nahum Shimkin2

1 McGill University
jia.yu@mcgill.ca, shie.mannor@mcgill.ca

2 Technion
shimkin@ee.technion.ac.il

Abstract. We consider a control problem where the decision maker in-
teracts with a standard Markov decision process with the exception that
the reward functions vary arbitrarily over time. We extend the notion of
Hannan consistency to this setting, showing that, in hindsight, the agent
can perform almost as well as every deterministic policy. We present effi-
cient online algorithms in the spirit of reinforcement learning that ensure
that the agent’s performance loss, or regret, vanishes over time, provided
that the environment is oblivious to the agent’s actions. However, coun-
terexamples indicate that the regret does not vanish if the environment
is not oblivious.

1 Introduction

We consider an agent, or decision-maker, interacting with a dynamic environ-
ment, whose state evolves as a Markov decision process and whose rewards
change arbitrarily from step to step. The arbitrary reward model encompasses
non-stationary or unpredictable environments, and opponents that cannot be
modeled. Many real-world control systems and complex decision problems can
be naturally modeled as Markovian processes in terms of dynamics, but not
in terms of rewards. Unless the reward process has well defined characteristics
(e.g., [10]), the classical Markov decision processes (MDP’s) model cannot be
used. Yet, in some of these cases, we can observe, fully or partially, the reward
process. As a motivation, let us consider the following example.

Example 1 (Multi-Armed Bandit with Delay). Consider a multi-armed bandit
problem with k arms and a special restriction (see Figure 1). When choosing an
arm for the following time step, the agent may repeat the current arm or switch.
If it chooses to switch to a different arm, it must go through an intermediate
idle state before completing the switch. We have one state for each of the k
arms, each with two actions (“repeat” and “switch”), and one “idle” state with
k actions leading to the corresponding arms. Not only does an MDP naturally
model this system, it can further capture the costs to transition from one arm
to another. We will show that, under reasonable assumptions, it is possible to
achieve asymptotically a reward as high as that of the best arm, regardless of
extra delays and transition costs.

S. Girgin et al. (Eds.): EWRL 2008, LNAI 5323, pp. 268–281, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Markov Decision Processes with Arbitrary Reward Processes 269

1

2

3idle

Fig. 1. Example 1: Multi-armed bandit with three arms and idle state

In this work, we make almost no assumption on the reward functions. Within
this setting, a reasonable objective is to do as well as some set of alternative
policies in hindsight—namely, to minimize regret. The concept of regret com-
pares, in retrospect1, the actual reward cumulated by an agent employing an
online learning policy to the highest reward attainable by a set of alternative
policies (e.g., the set of deterministic policies). Note that the set of deterministic
policies, although rich, pales in comparison with the set of all behavioral policies.
This essentially offsets the fact that the agent does not have the benefit of fore-
sight, i.e., it has absolutely no prior knowledge about the rewards. To minimize
regret is to achieve zero regret after averaging over time and as the time horizon
increases to infinity.

This work extends the objective of regret minimization (surveyed in Section 3)
to a dynamic environment modeled as a Markov decision process with an arbi-
trary sequence of reward functions. We employ an approach where the agent fol-
lows a fixed policy over each interval of a partitioned time horizon. We present
solutions with the following features: computational efficient, capable to esti-
mate partially observed reward functions, and able to track infrequent changes
in the best deterministic policy. We provide performance guarantees in the form
of asymptotic bounds on the regret in terms of the length of the time horizon.
Dependencies on the sizes of the state and action spaces, and mixing times, are
not the focus of this paper.

We begin by describing the setting (Section 2) and situating our work within
the literature in Section 3. In Section 4, we present an algorithm that ensure
that the agent’s expected regret over T steps vanishes almost as2 O(T−1/4) if
the environment is oblivious to the agent’s state and action history. Furthermore,
the regret vanishes with probability 1 as long as the agent does not change its
policy too often. Among further extensions, we present modifications of our basic
algorithm to reduce the computational cost with approximations, to estimate the
average reward process when observation is limited to the trajectory (i.e., the

1 By “retrospect” or “hindsight,” we mean “given complete knowledge of the reward
functions picked by the environment.”

2 We adopt the standard order notations. For instance, given sequences fn and gn, we
write fn = O(gn) if and only if there exist N and β > 0 such that |fn| ≤ β |gn| for
all n > N .

270 J.Y. Yu, S. Mannor, and N. Shimkin

agent only observes rewards in the states visited), and to track the optimal
policy through infrequent changes. In Section 5, we show that approximation
algorithms for dynamic programming (e.g., Q-learning type algorithms) can be
used to minimize the regret when an exact solution is too demanding. Section 6
shows that the agent does not have to observe the entire reward functions,
but only the rewards at state-action pairs that are visited. In Section 7, we
minimize regret with respect to a subset of non-stationary policies—dynamic
policies where the number of policy changes from step to step is limited.

2 Problem Definition

We consider an agent in a dynamic environment with two components: a con-
trolled Markov process and an arbitrarily time-varying reward process. The re-
ward process is assumed to behave in a non-stochastic and possibly arbitrary
manner. It can be thought of as driven by an opponent or Nature. The Markov
chain component is a standard Markov decision process (MDP) that is defined
by a triple (S,A, P) where S is the (finite) set of states of the MDP, A is the
(finite) set of actions available to the agent (assumed identical in all states, with-
out loss of generality), and P is the transition probability—that is, P (s′ | s, a)
is the probability that the next state is s′ if the current state is s and action a
is taken.

The discrete steps are indexed t = 0, 1, . . . We assume throughout the paper
that the initial state at step 0 is fixed and denoted s0, unless otherwise specified.
At the t-th step, the following happen:

1. The opponent chooses a reward function rt : S ×A→ [0, 1];
2. the state st is revealed;
3. the agent chooses an action at;
4. the entire reward function rt is revealed; the agent receives reward rt(st, at);
5. the next state st+1 is determined stochastically according to the transition

probability P (st+1 | st, at).

Remark 1 (Notation). We associate random variables with a bold typeface (e.g.,
st), and their realizations with a normal typeface (e.g., st).

In general, the opponent (a term that we use synonymously with environment)
determines a sequence of functions r0, r1, . . ., where rt may be picked on the
basis of the past state-action history, i.e., on (s0, a0, . . . , st−1, at−1). In most of
the following development, we consider oblivious opponents that pick the reward
functions r1, r2, . . . independently of the past state-action history. This is made
exact in the following section.

We are interested in agents that learn online. When choosing action at at step
t, we assume that the agent knows the current state st, as well as the transition
probability P and the past reward functions r0, . . . , rt−1 over all state-action
pairs. A policy is a mapping from the reward history (r0, . . . , rt−1) and transition
history (s0, a0, s1, . . . , st) to a mixed action in the simplex ∆(A)3. A stationary
3 ∆(A) denotes the set of all probability vectors over A.

Markov Decision Processes with Arbitrary Reward Processes 271

policy is a policy µ : S → ∆(A) that depends solely on the current state st—and
not on the history of the rewards or the transitions. A stationary deterministic
policy, or deterministic policy for short, is a mapping µ : S → A from the current
state to an action. We shall denote by at the agent’s (random) action at step t,
chosen according to its policy.

2.1 Regret

The goal of the agent is to maximize its average cumulative reward over a long
time horizon of T steps, which is not known a priori: 1

T

∑T−1
t=0 rt(st, at). We shall

focus on policies that minimize regret, which measures in retrospect how worse
off the agent is compared to a set of alternative policies. Regret arises from the
lack of prior knowledge on the sequence of reward functions picked by the oppo-
nent. We present a notion of regret that essentially compares the actual reward
obtained by the agent with a hypothetical reward. This hypothetical reward is
the expected reward an agent that possesses prior knowledge concerning the
reward function sequence could have obtained. We restrict our basis of compar-
ison to the set of deterministic policies {µ : S → A}, which we denote by Σ.
Our concept of regret collapses to the classical notion of regret studied in online
learning (cf. [8]).

A natural hypothetical reward is the expected reward attainable by the best
deterministic policy given full knowledge of the sequence of reward functions rt.
Hence, we have the following definition, which extends the concept of “modified
regret” introduced in [13].

Definition 1 (Regret). The regret is

sup
µ∈Σ

E

[
T−1∑
t=0

rt(s̃t, µ(s̃t))

]
−

T−1∑
t=0

rt(st, at), (1)

where the expectation E is over the sequence (s̃t, µ(s̃t)). This is a random quan-
tity that depends on the agent’s random trajectory (st, at). It is implicitly un-
derstood that both sequences s̃t and st start at the initial state s0 and follow the
transition kernel P .

Observe that this notion of regret remain the same whether Σ is the set of
deterministic policies, or the set of stationary policies—as considered by [16]
and [11].

3 Related Works

The problem of minimizing the regret can be traced back to the seminal work of
[13]. In the context of repeated matrix games where the sequence of opponent
actions is arbitrary, Hannan proposed a policy that adapts to the opponent’s past
actions in an incremental fashion, yet asymptotically performs as well as the best
fixed policy against the same sequence of opponent actions. In fact, the difference

272 J.Y. Yu, S. Mannor, and N. Shimkin

in cumulated payoff between these policies is only of the order of the square root
of the number of repetitions of the game, regardless of whether the opponent is
oblivious or not. The proposed policy optimizes the payoff against the empirical
distributions of the opponent’s actions so far perturbed by vanishingly small
noise. The reader can find a survey of methods for achieving Hannan consistency
in [8].

Optimal control in MDP’s with unknown, but stationary, reward processes
can be solved using reinforcement learning, e.g., model-based and Q-learning
algorithms [4]. However, fairly limited work has been done on regret minimiza-
tion for Markovian environments. One model of interest is a stochastic game [18]
where rewards and transitions depend on the actions of an arbitrary opponent, as
in [16]. In contrast to an ordinary stochastic game, the opponent is not necessar-
ily rational or self-optimizing. The emphasis is providing the agent with policies
that perform well against every possible opponent. An equilibrium solution to
a zero-sum stochastic game, such as one produced by the R-max algorithm of
[7], may well be too conservative when the opponent is not adversarial. In such
a setting, the agent’s goal is to exploit the non-adversarial characteristic of the
opponent. Using approachability theory, Mannor and Shimkin [16] show that
regret minimization is possible, but only with respect to a relaxed objective. No-
tably, single-controller games, where the opponent alone controls the transition
probabilities, can be treated as a sequence of interleaved repeated games, and
regret can be minimized by separately minimizing the regret in each repeated
game. Our model corresponds to a stochastic game where an arbitrary oppo-
nent picks the reward functions, but does not affect state transitions. We give
algorithmic solutions with clear computational complexity guarantees. Merhav
et al. [17] consider sequential decision problems where the loss functions have
memory, which correspond to MDP’s where every state is reachable from every
other via a single action. They present an algorithm using piecewise-constant
policies and provide regret-minimizing guarantees similar to ours.

The problem that we consider resembles that of Even-Dar et al. [11]. Although
the motivation is the same, our model differs significantly. In our model, the
instantaneous reward to the agent is a random variable rt(st, at) and, in turn,
the regret is defined in terms of a random state-action trajectory.

4 Follow the Perturbed Leader

In this section, we present and analyze an algorithm that minimizes regret.
To preclude singular examples, we shall first introduce an uniform ergodicity
assumption on the MDP structure and an obliviousness assumption on the op-
ponent. The algorithm and its analysis will follow.

Assumption 1 (Uniform Ergodicity). The induced Markov chain is uni-
formly ergodic over the set of deterministic policies4. This guarantees that there
4 The ergodic assumption is quite weak as it only requires that all recurrent states in

the Markov chain communicate and be aperiodic.

Markov Decision Processes with Arbitrary Reward Processes 273

exists a unique stationary distribution π(µ) for each policy µ. Moreover, there
exists (cf. [5]) a finite mixing time γ ≥ 0; i.e., there exists a finite γ ≥ 0 such
that for every policy µ ∈ Σ, every initial state s0, and t ≥ 0, we have

‖dt(µ; s0)− π(µ)‖1 ≤ 2e1−t/γ.

4.1 Oblivious Opponent

In this section, we present models for the environment against which online
learning can not guarantee vanishing regret.

Example 2 (Non-oblivious Opponent). Let the states be S = {1, 2, 3} as in Fig-
ure 2. The agent has two actions A = {α1, α2} to choose from: whether to move
from state 1 to state 2 (action α2) or from state 1 to state 3 (action α3). There
is a small probability of staying in state 1 regardless of the action, thus mak-
ing the MDP aperiodic. From state 2 or 3, the agent moves back to state 1
deterministically.

The non-oblivious opponent assigns 0 reward to state 1 at all stages. It gives
a reward of 1 to the state 2 if the agent took the action leading to state 3 at the
previous time step; otherwise, it gives 0 reward to state 2. Similarly, the opponent
gives a reward of 1 to the state 3 if the agent took the action leading to state 2,
and a reward of 0 otherwise. Consequently, for every policy, the attained reward
is

∑T−1
t=0 rt(st,at) = 0, whereas we have either

∑T−1
t=0 rt(st, α2) ≥ 1/2 − p or∑T−1

t=0 rt(st, α3) ≥ 1/2− p. As a result, the average regret is always positive and
bounded away from 0. Hence, for this aperiodic and recurrent MDP, zero-regret
policies do not exist. This example is stronger than the counterexample presented
in [16], where the non-vanishing regret is attributed to lack of observation of the
reward.

In light of this counterexample, we restrict our attention to problems where the
opponent is oblivious; in other words, when the opponent determines the entire
sequence of reward functions ahead of time, but reveals them one at a time. There
are two justifications for this approach. First, from a modeling perspective, the
agent may interact with other agents that are truly oblivious, irrational, or have

(α2, 1 − p) (α3, 1 − p)

w.p. 1 w.p. 1

w.p. p

12 3

Fig. 2. Example 2. Taking action α2 in state 1 leads to state 2 with probability 1 − p.
Moreover, taking any action in state 1 leads back to state 1 with probability p.

274 J.Y. Yu, S. Mannor, and N. Shimkin

an unspecified or varying objective. This renders their behavior “unpredictable”
and seemingly arbitrary. Second, in the presence of many agents, a single agent
has little effect on the overall outcome (e.g., price of commodities, traffic in net-
works) due to the effect of large numbers [2]. Moreover, as Example 2 shows, the
regret cannot be made asymptotically small when the opponent is not oblivious.
Formally, we state the non-obliviousness assumption as follows.

Assumption 2 (Oblivious Opponent). The reward functions rt, for t =
0, . . . , T − 1, are random variables on the null σ-algebra. Hence, for every ran-
dom variable Xt measurable by the σ-algebra generated by (s0,a0, r0, . . . , st, at)
satisfies the following:

E
[
rt(s, a)Xt

]
= rt(s, a)E

[
Xt

]
, for all (s, a) ∈ S ×A.

4.2 Algorithm

We present an algorithm based on a concept due to [13], that of following the best
action so far subject to some random perturbation that vanishes with time. The
algorithm works in phases. We partition the steps {0, . . . , T − 1} into M phases
(i.e., intervals of consecutive steps5), denoted by τ0, . . . , τM−1. The phases are
long enough that the state-action distribution approaches stationarity, and such
that the number of phases M becomes sublinear in T—this will be made precise
in the results below. The phases are nonetheless short enough so that the agent
adapts fast enough to changes in the reward functions. As a convention, we let
the index t denote a step, whereas the index m refers to phase τm. Moreover,
we write τ0 . . . τm to denote the union of phases τ0 ∪ . . . ∪ τm, and |τ0 . . . τm| to
denote its length.

For ease of notation, we write the average reward over one or more phases as

r̂τm(s, a) � 1
|τm|

∑
t∈τm

rt(s, a), r̂τ0...τm(s, a) � 1
|τ0 . . . τm|

∑
t∈τ0...τm

rt(s, a),

for all (s, a) ∈ S ×A. The algorithm takes as input the step index t ∈ τm, state
st, and average reward function r̂τ0...τm−1 . It outputs a random action at(st) dis-
tributed according to a mixed policy σm. For the purpose of randomization, the
algorithm samples a sequence n1, . . . ,nM−1 of independent random variables6

in R|S×A|.

Algorithm 1 (Lazy FPL).

1. (Initialize.) For t ∈ τ0, choose the action at(st) according to an arbitrary
deterministic policy µ : S → A.

2. (Update.) At the start of phase τm, form = 1, 2, . . ., solve the following linear
program for (λm, hm):

5 The partition is constructed such that the order between steps within each phase is
preserved.

6 Their distributions will be specified later.

Markov Decision Processes with Arbitrary Reward Processes 275

min
λ∈R,h∈R|S|

λ (2)

subject to: λ+ h(s) ≥ r̂τ0...τm−1(s, a) +
∑
s′∈S

P (s′ | s, a)h(s′), (s, a) ∈ S ×A,

h(s+) = 0, for some fixed s+ ∈ S.

3. (Follow the perturbed leader.) For t ∈ τm, for m = 1, 2, . . ., choose the action

at(st) = arg max
a∈A

{
r̂τ0...τm−1(st, a) + nm(st, a) + Est+1|st,a

[
hm(st+1)

]}
, (3)

where the element of A with the lowest index is taken if the max is not
unique, and the expectation is only taken with respect to the transition
probabilities from the current state st to the next one st+1, i.e.,

Est+1|st,a

[
hm(st+1)

]
=

∑
s′∈S

P (s′ | st, a)hm(s′).

Observe that the linear program (2) solves MDP’s with the average-reward as
the objective [3]. The Lazy FPL algorithm perturbs the average reward function
r̂τ0...τm−1 with a random variable nm, so that at is random as well. The algorithm
samples the random variable nm only once at the start of every phase. The
realization of nm is used throughout the phase τm. Therefore, for a fixed state s,
the actions at(s), for t ∈ τm, are identical. In effect, there exists a deterministic
policy that determines the actions of each phase. We shall denote by σm : S →
∆(A) the mixed policy corresponding to the distribution of at for t ∈ τm.

Introducing randomness through perturbations guarantees that the policies in
consecutive phases do not change too abruptly. We thus avoid behavior reminis-
cent of the proverbial Buridan’s ass. This is similar to other regret minimization
algorithms (e.g., [13,15]) and smooth fictitious play [12]. The motivation of in-
creasing phase lengths is twofold. Firstly, using a fixed policy over long phases
is computationally efficient. Secondly, in addition to vanishing expected regret,
we show vanishing regret with probability 1, provided that the agent does not
change its policy too often. One intuition is that, on the one hand, our bases for
comparison are the steady-state rewards of deterministic policies; on the other
hand, taking long phases ensures that the agent’s accumulated reward in each
phase approaches the steady-state reward of the corresponding policy. Finally,
observe that prior knowledge of the time horizon T is not necessary to run the
Lazy FPL algorithm. The only prerequisite is a pre-established scheme to parti-
tion every time interval into phases.

4.3 Results

In this section, we show that if we follow the Lazy FPL algorithm, then the
time-average regret converges almost-surely to zero, i.e., Hannan consistency.
For the sake of space, the proofs are confined to [19].

276 J.Y. Yu, S. Mannor, and N. Shimkin

The following main result shows that increasing phase lengths yields not only
an efficient implementation, but also guarantees a stronger type of convergence
for the average regret.

Theorem 1 (Hannan Consistency of Lazy FPL). Suppose that Assump-
tions 1 and 2 hold. Further, suppose that the random variables nm(s, a), for
m = 1, 2, . . . and (s, a) ∈ S × A, are independent and uniformly distributed7

over the support [−1/ζm, 1/ζm], where ζm �
√
|τ0 . . . τm|. Let the time horizon

0, . . . , T − 1 be partitioned into phases τ0, . . . , τM−1 such that there exists an
ε ∈ (0, 1/3) for which |τm| = &m1/3−ε', for m = 0, . . . ,M −1. Then, the average
regret of the Lazy FPL algorithm vanishes almost surely, i.e.,

lim sup
T→∞

{
sup
µ∈Σ

E

[
1
T

T−1∑
t=0

rt(s̃t, µ(s̃t))

]
− 1
T

T−1∑
t=0

rt(st, at)

}
≤ 0, w.p. 1.

Remark 2. Theorem 1 makes no assumption about the sequence of reward func-
tions except for boundedness and obliviousness.

Remark 3. Observe that the partition of Theorem 1 can be constructed incre-
mentally over time, without prior knowledge of the time horizon T . Having a
slowly increasing phase length suffices for obtaining convergence.

The proof of Theorem 1 (cf. [19]) proceeds as follows. The oblivious opponent
assumption makes stationary policies as good as any other within long phases.
The ergodicity assumption allows us to concentrate on the stationary distribu-
tions of the baseline policies, as well as the policies of the sequence of phases. The
perturbation noise endows a continuity between policies of consecutive phases,
yet vanishing quickly enough as not to severely affect the optimality of the so-
lution computed in the Update step of the Lazy FPL algorithm. Next, a careful
choice of the lengths of the phases ensures that the agent cannot much improve
its total reward had it adopted the best stationary policy against the observed
reward functions. Finally, a probabilistic bound on the regret is derived using a
modified version of Azuma’s Inequality.

Proposition 1 (Expected Regret Bound). Suppose that the assumptions of
Theorem 1 hold. In particular, suppose that there exists an ε ∈ (0, 1/3) such that
|τm| = &m1/3−ε', for m = 0, . . . ,M − 1. Then, the time-averaged expected regret
of the Lazy FPL algorithm satisfies the following bound:

sup
µ∈Σ

E

[
1
T

T−1∑
t=0

rt(s̃t, µ(s̃t))

]
− E

[
1
T

T−1∑
t=0

rt(st, at)

]

≤ 4
3
(
2eγ + 2 |A|+ 4e+ 1 + 2(|S|+ 3) |A|2 γ log(T)

)
T−1/4+ε. (4)

7 The random variable nm(s, a) has probability density function

fnm(s,a)(z) =
j

ζm/2, if z ∈ [−1/ζm, 1/ζm] ,
0, otherwise.

Markov Decision Processes with Arbitrary Reward Processes 277

5 Approximate Algorithms

In many cases, computing the optimal policy σm at each phase τm in the Lazy
FPL algorithm, might be intractable. We may instead compute an approximation
ρm to σm. The policy ρm is still computed once every phase, i.e., once every |τm|
steps, but using a computationally efficient method. Our approximation proceeds
by approximating the optimal Q-function. Recall that a Q-function is a function
Q : S×A→ R that represents the relative advantage of using a particular action
at a particular state. Let hm denote a vector that is part of the optimal solution
to the linear program (2) at the start of phase τm. The corresponding optimal
Q-function is therefore defined as

Q∗
m(s, a) = r̂τ0...τm−1(s, a) +

∑
s′∈S

P (s′ | s, a)hm(s′).

In the following algorithm, we use Q-learning [4, Chapter 7] to compute an
approximation ρm to the optimal policy σm of the Lazy FPL algorithm. In
essence, Q-learning is employed as a method of solving the linear program of the
Lazy FPL algorithm. It is well known that Q-learning is an iterative simulation-
based method (reminiscent of value iteration) that does not need to keep track
of the transition probabilities. Let Qt denote the sequence of Q-functions over
S × A, and Qτ0...τm−1 denote the Q-function obtained at the last step of phase
τm−1. During every step t of phase τm, we choose our action to maximize the
Q-function Qτ0...τm−1 obtained over the previous phases, perturbed by a random
noise term nm; simultaneously, we update the Q-function at every step.

Algorithm 2 (Q-FPL).

1. (Initialize.) For t ∈ τ0, set Qt = 0 and choose action at(st) according to an
arbitrary deterministic policy µ : S → A.

2. (Update.) At every step t ∈ τm, for m = 1, 2, . . ., set κm = 1/
√
m and update

Qt iteratively as follows:

Qt(st−1, at−1) = (1− κm)Qt−1(st−1, at−1)

+ κm

(
r̂τ0...τm−1(st−1, at−1) + max

a∈A
Qt−1(st, a)−Qt−1(s′, a′)

)
, (5)

where s′ and a′ are fixed, and the term Qt−1(s′, a′) is for the purpose of
normalization.

3. (Perturb.) At every step t ∈ τm, for m = 1, 2, . . ., choose action

at(st) = argmax
a∈A

{
Qτ0...τm−1(st, a) + nm(st, a)

}
,

where nm conforms to the assumptions of Theorem 1.

Remark 4. As for the Lazy FPL algorithm, the reward function r̂τ0...τm−1 is fixed
throughout phase τm.

278 J.Y. Yu, S. Mannor, and N. Shimkin

Let Q∗
τ0...τm−1

denote the optimal Q-function in phase τm with the fixed reward
function r̂τ0...τm−1 . By [6, Theorem 2.4], within each phase of our MDP—where
the reward function is fixed, for every β > 0 and γ > 0, and phases long enough,
we have Pr

(∥∥Qt − Q∗
τ0...τm−1

∥∥
1 > β

)
< γ, as required8. The sequence κm is

selected such that it tends to zero at a sub-linear rate (see the discussion in
Section 4.3 of [6]). We obtain the following corollary by an argument similar to
Theorem 1.

Corollary 1. Suppose that the assumptions of Theorem 1 hold. Then, the av-
erage regret of the Q-FPL algorithm vanishes almost surely.

Other algorithms, especially some actor-critic algorithms that are equivalent to
Q-learning [9], may be used as well.

Remark 5 (Computational Load). The Q-FPL algorithm has a fixed computa-
tional load per step. This complexity is less demanding than that of [11], although
the latter is also fixed per step. In comparison, the Lazy FPL algorithm requires
solving an MDP at the beginning of every phase, but it has the advantage of
diminishing the per-step complexity.

6 Observing Rewards Only on Trajectory

We present a modification of the Lazy FPL algorithm in the spirit of [1] to deal
with instances where the reward functions are partially observed. More precisely,
we consider the case where the agent only observes the value of the reward
function sequence on its state-action history (or trajectory). Consequently, we
restrict the space of the agent’s policies to those that map observed rewards
r0(s0, a0), . . . , rt−1(st−1, at−1) and the current state st to a mixed action. Our
approach is to construct an unbiased estimate of r̂τ0...τm−1 for all m.

To this end, we construct a random reward function at every step t. The
length of the phase τ0 and the policy adopted therein are such that P

(
(st, at) =

(s, a) | s0
)
> 0 for t ≥ |τ0| and (s, a) ∈ S × A. Next, for all t ≥ |τ0| and

(s, a) ∈ S ×A, let

zt(s, a) =

{
rt(s,a)

P
(
(st,at)=(s,a) | s0

) , if (st,at) = (s, a),

0, otherwise.

Observe that only the value of rt at the traversed state-action pair (st,at) is
required to evaluate zt. The probability P

(
(st, at) = (s, a) | s0

)
is readily com-

puted recursively using the transition probabilities associated with the policy
followed at step t − 1. From the sequence zj , we construct ẑt � 1

t

∑t−1
j=0 zj as

an estimate of r̂t = (1/t)
∑t−1

j=0 rj . In conformance with our notation, ẑτ0...τm−1

denotes ẑt, where t is the first step of phase τm.
8 To be accurate, for the off-policy Q-function evaluation in Step 2 of the Q-FPL

algorithm to converge to Q∗
τ0...τm−1 , we must ensure that the policy induced by

Step 3 performs sufficient exploration.

Markov Decision Processes with Arbitrary Reward Processes 279

Algorithm 3 (Exploratory FPL).

1. (Initialize.) Let the length of phase τ0 be long enough that P
(
(st,at) =

(s, a) | s0
)
> 0 for t ≥ |τ0| and (s, a) ∈ S × A. For t ∈ τ0, choose action at

uniformly at random over A.
2. (Estimate.) At every step t = 1, 2, . . ., compute the estimate ẑt recursively.
3. (Sample.) At the start of phase τm, for m = 1, 2, . . ., sample an independent

Bernoulli random variable xm that takes value 1 with probability φm.
4. (Lazy FPL.) If xm = 0, by substituting ẑτ0...τm−1 for r̂τ0...τm−1 , solve the

linear program (2) and follow the policy of Equation (3) throughout phase
τm.

5. (Explore.) If xm = 1, for t ∈ τm and m = 1, 2, . . ., choose action at uniformly
at random over A.

Corollary 2 (Hannan Consistency of Exploratory FPL). Suppose that
the assumptions of Theorem 1 hold. Further, suppose that the agent follows the
Exploratory FPL algorithm with a sequence φm ensuring infinitely many explo-
ration phases, and such that

M−1∑
m=0

|τm|φm = O(M), and φm > 0, for m = 0, . . . ,M − 1. (6)

Then, the average regret of the Exploratory FPL algorithm vanishes almost
surely.

Remark 6. Corollary 2 guarantees that the Exploratory FPL algorithm mini-
mizes regret in the generalized multi-arm bandit problem of Example 1.

7 Regret against Dynamic Policies

In this section, we consider a more general notion of regret that encompasses
some dynamic policies. Consider a sequence of policies µ = (µ0, . . . , µT−1), where
every element µj of this sequence is a deterministic policy µj : S → A. Let the
number of switches in this sequence of policies be K(µ) =

∑T−1
j=1 1[µj−1 �=µj].

Let K0 be a fixed integer. A more challenging baseline of comparison for the
cumulated reward is

sup
(µ0,...,µT−1):

K(µ)≤K0

T−1∑
t=0

E
[
rt(s̃t, µt(s̃t))

]
, (7)

where (s̃0, µ0(s̃0)), . . . , (s̃T−1, µT−1(s̃T−1)) denote state-action pairs induced by
the sequence of policies µ0, . . . , µT−1, and the maximum is taken over all pos-
sible sequences of policies with at most K0 switches. If K0 = 0, then Equa-
tion (7) reduces to the baseline considered so far (cf. Equation (1)). We present
an algorithm that guarantees a reward consistent with the above baseline. This
algorithm adapts the Fixed-share algorithm of [14] to the MDP framework.

280 J.Y. Yu, S. Mannor, and N. Shimkin

Algorithm 4 (Tracking FPL).

1. (Initialize.) Fix α ∈ [0, 1]. For t ∈ τ0, choose action at(st) according to an
arbitrary deterministic policy µ : S → A.

2. (Sample.) At the outset of phase τm, for m = 1, 2, . . ., sample a Bernoulli
random variable xm with Pr(xm = 1) = α.

3. (Fixed-share.) If xm = 0, sample a policy ym uniformly at random from the
set of deterministic policies Σ, then follow the policy ym throughout phase
τm.

4. (Lazy FPL.) If xm = 1, solve the linear program (2) and follow the policy of
Equation (3) throughout phase τm.

Remark 7. Observe that as before, the algorithm elects a single policy in each
phase and follows it throughout. The fixed-share scheme occurs once in each
phase—at the outset. Observe as well that there exist methods to efficiently
construct the uniformly random policy ym. As in the Fixed-share algorithm of
[14], the action at each step is equal to the previous action with probability
1− α+ α/ |A|, and equal to each different action with probability α/ |A|.

The following theorem guarantees that the regret with respect to the reward
achieved by the best sequence of policies with a finite number of switches vanishes
asymptotically if the agent employs the Tracking FPL algorithm.

Theorem 2 (Hannan Consistency of Tracking FPL). Suppose that the
assumptions of Theorem 1 hold. Let K0 be a positive integer. Suppose further
that the agent follows the Tracking FPL algorithm with the parameter α =
K0/(&T/&T 1/3'' − 1). Then, the average regret with respect to the baseline of
Equation (7) vanishes almost surely, i.e.,

lim sup
T→∞

⎧⎪⎨⎪⎩ sup
(µ0,...,µT−1):

K(µ)≤K0

E

[
1
T

T−1∑
t=0

rt(s̃t, µt(s̃t))

]
− 1
T

T−1∑
t=0

rt(st, at)

⎫⎪⎬⎪⎭ ≤ 0, w.p. 1.

Remark 8. Although we only consider the case of a fixed number of switches
K0 and a fixed parameter α, it can be shown, by using doubling trick of [8,
Section 3.2], that the result of Theorem 2 holds as long as the number of switches
K0 increases slowly enough in T .

References

1. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multi-
armed bandit problem. SIAM J. Computing 32(1), 48–77 (2002)

2. Aumann, R.J.: Markets with a continuum of traders. Econometrica 32, 39–50
(1964)

3. Bertsekas, D.P.: Dynamic programming and optimal control, 2nd edn., vol. 2.
Athena Scientific (2001)

Markov Decision Processes with Arbitrary Reward Processes 281

4. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-dynamic programming. Athena Scientific
(1996)

5. Bobkov, S.G., Tetali, P.: Modified logarithmic Sobolev inequalities in discrete set-
tings. Journal of Theoretical Probability 19(2), 289–336 (2006)

6. Borkar, V.S., Meyn, S.P.: The O.D.E. method for convergence of stochastic ap-
proximation and reinforcement learning. SIAM J. Control and Optimization 38(2),
447–469 (2000)

7. Brafman, R.I., Tennenholtz, M.: R-max—a general polynomial time algorithm for
near-optimal reinforcement learning. Journal of Machine Learning Research 3, 213–
231 (2003)

8. Cesa-Bianchi, N., Lugosi, G.: Prediction, learning, and games. Cambridge Univer-
sity Press, Cambridge (2006)

9. Crites, R.H., Barto, A.G.: An actor/critic algorithm that is equivalent to Q-
learning. In: Advances in Neural Information Processing Systems, pp. 401–408
(1995)

10. Duffield, N.G., Massey, W.A., Whitt, W.: A nonstationary offered-load model for
packet networks. Telecommunication Systems 16(3–4), 271–296 (2001)

11. Even-Dar, E., Kakade, S., Mansour, Y.: Experts in a Markov decision process. In:
NIPS, pp. 401–408 (2004)

12. Fudenberg, D., Kreps, D.M.: Learning mixed equilibria. Games and Economic Be-
havior 5(3), 320–367 (1993)

13. Hannan, J.: Approximation to Bayes risk in repeated play. In: Contributions to the
Theory of Games, vol. 3, pp. 97–139. Princeton University Press, Princeton (1957)

14. Herbster, M., Warmuth, M.K.: Tracking the best expert. Machine Learning 32(2),
151–178 (1998)

15. Kalai, A., Vempala, S.: Efficient algorithms for online decision problems. Journal
of Computer and System Sciences 71(3), 291–307 (2005)

16. Mannor, S., Shimkin, N.: The empirical Bayes envelope and regret minimization in
competitive Markov decision processes. Mathematics of Operations Research 28(2),
327–345 (2003)

17. Merhav, N., Ordentlich, E., Seroussi, G., Weinberger, M.J.: On sequential strategies
for loss functions with memory. IEEE Trans. Inf. Theory 48(7), 1947–1958 (2002)

18. Shapley, L.: Stochastic games. PNAS 39(10), 1095–1100 (1953)
19. Yu, J.Y., Mannor, S., Shimkin, N.: Markov decision processes with arbitrarily

varying rewards (Preprint, 2008), http://www.cim.mcgill.ca/∼jiayuan/mdp.pdf

http://www.cim.mcgill.ca/~jiayuan/mdp.pdf

Author Index

Bertsekas, Dimitri P. 253

Cappé, Olivier 69
Clérot, Fabrice 69

Defourny, Boris 1
Degris, Thomas 15
Deisenroth, Marc Peter 229
Denoyer, Ludovic 205
Dimitrakakis, Christos 27
Driessens, Kurt 124
Dyagilev, Kirill 41

Ernst, Damien 1

Farahmand, Amir massoud 55
Filippi, Sarah 69
Fricout, Gabriel 96

Gabel, Thomas 82
Gallinari, Patrick 205
Geist, Matthieu 96
Ghavamzadeh, Mohammad 55
Girgin, Sertan 110
Goetschalckx, Robby 124
Gómez-Sanchis, Juan 191

Heidrich-Meisner, Verena 136
Hren, Jean-François 151

Igel, Christian 136

Kober, Jens 220

Lagoudakis, Michail G. 27
Lanzi, Pier Luca 179

Li, Yuxi 165
Loiacono, Daniele 179

Maes, Francis 205
Magdalena-Benedito, Rafael 191
Mannor, Shie 41, 55, 268
Mart́ın-Guerrero, José D. 191
Mart́ınez-Sober, Marcelino 191
Moulines, Eric 69
Munos, Rémi 151

Nguyen-Tuong, Duy 220

Peters, Jan 220
Pietquin, Olivier 96
Preux, Philippe 110

Rasmussen, Carl Edward 229
Riedmiller, Martin 82

Sanner, Scott 124
Schuurmans, Dale 165
Serrrano-López, Antonio J. 191
Shimkin, Nahum 41, 268
Sigaud, Olivier 15
Soria-Olivas, Emilio 191
Szepesvári, Csaba 55

Wehenkel, Louis 1
Welsh, Noel 243
Wuillemin, Pierre-Henri 15
Wyatt, Jeremy 243

Yu, Huizhen 253
Yu, Jia Yuan 268

	Title Page
	Foreword
	Preface
	Organization
	Table of Contents
	Lazy Planning under Uncertainty by Optimizing Decisions on an Ensemble of Incomplete Disturbance Trees
	Introduction
	Related Work
	Planning over a Disturbance Tree
	Formalization
	Illustration

	Lazy Approach Using an Ensemble of Incomplete Disturbance Trees to Derive a First-Stage Decision
	Principle
	Illustration

	Conclusions
	References

	Exploiting Additive Structure in Factored MDPs for Reinforcement Learning
	Introduction
	Background
	Linear Programming Based Approximation in MDPs
	Linear Programming Based Approximation in Factored MDPs
	Context-Specific Independence
	Structured DYNA and Spiti

	Exploiting Additive Structure in SDYNA
	Learning the Structure
	Acting and Planning

	Results
	Discussion
	References

	Algorithms and Bounds for Rollout Sampling Approximate Policy Iteration
	Introduction
	Preliminaries
	Rollout Estimates

	Related Work
	Algorithms to Reduce Sampling Cost
	Complexity of Sampling-Based Policy Improvement
	Sufficient Conditions
	The \sc{oracle} Algorithm
	Error Bounds for States
	Uniform Sampling: The \sc{fixed} Algorithm
	The \sc{Count} Algorithm

	Discussion
	References

	Efficient Reinforcement Learning in Parameterized Models: Discrete Parameter Case
	Introduction
	ModelFormulation
	PerformanceMetrics
	The Parameter Elimination Algorithm
	Proof of the Main Result
	An Auxiliary Model
	Implicit Explore or Exploit
	Discovery Lemma
	Sequential Hypothesis Testing
	Proof of the Main Result

	Discussion and Illustrative Examples
	Conclusion
	References

	Regularized Fitted Q-Iteration: Application to Planning
	Introduction
	The Organization of the Paper

	Background and Notation
	Algorithm
	Error Propagation
	L^2-Bound for Regularized Kernel-Based Regression
	Illustration
	Discussion
	References

	A Near Optimal Policy for Channel Allocation in Cognitive Radio
	Introduction
	Modeling the Channel Allocation Problem for Cognitive Radio
	Channel Allocation
	POMDP Modeling
	Link with the Restless Multi-armed Bandit Framework

	Near Optimal Policy Formulation
	Internal State Definition
	Value Function and Bellman Equation
	Discretizing the Internal State Space
	Algorithm
	Approximation Result

	Simulation Results
	Conclusion
	References

	Evaluation of Batch-Mode Reinforcement Learning Methods for Solving DEC-MDPs with Changing Action Sets
	Introduction
	Decentralized MDPs
	Variable Action Sets

	Reactive Policies and Resolved Dependencies
	Communication-Based Awareness of Dependencies

	Policy Acquisition with Reinforcement Learning
	Challenges for Independent Learners
	Joint Policy Acquisition with Reinforcement Learning

	Experiments
	Scheduling Problems
	Experiment Outline
	Illustrative Benchmark
	Benchmark Results

	Related Work
	Conclusion
	References

	Bayesian Reward Filtering
	Introduction
	Background
	Reinforcement Learning
	Bayesian Filtering

	The General Framework
	Practical Solution
	Dictionary Computation
	Gaussian Prior
	Parameters Update
	Maximum over Action Space

	Preliminary Results
	Choice of Parameters
	Wet-Chicken
	Mountain Car
	Comparison to Other Methods

	Conclusion and Future Works
	References

	Basis Expansion in Natural Actor Critic Methods
	Introduction
	Policy Gradient and Natural Actor Critic Methods
	Cascade Correlation Networks and Basis Function Construction
	Experiments
	Related Work
	Conclusion
	References

	Reinforcement Learning with the Use of Costly Features
	Introduction
	Related Work
	Reinforcement Learning with Costly Features
	MDPs and Reinforcement Learning
	Cost-Sensitive Value Approximation

	Sparse Linear-Value Approximation
	Least Angle Regression Methods

	Experiments
	Conclusions and Future Work
	References

	Variable Metric Reinforcement Learning Methods Applied to the Noisy Mountain Car Problem
	Introduction
	Reinforcement Learning Directly in Policy Space
	Natural Policy Gradient Ascent
	Covariance Matrix Adaptation Evolution Strategy

	Similarities and Differences of NAC and CMA-ES
	Experiments
	Conclusion
	References

	Optimistic Planning of Deterministic Systems
	Introduction
	Planning Under Finite Numerical Resources
	Uniform Planning
	Look-Ahead Tree Search
	The Algorithm
	Analysis

	Optimistic Planning
	The Algorithm
	Analysis

	Numerical Experiments
	Conclusions and Future Works
	References

	Policy Iteration for Learning an Exercise Policy for American Options
	Introduction
	Markov Decision Processes
	Learning an Exercise Policy for American Options
	LSPI for Learning an Exercise Policy for American Options
	FQI: The Policy Iteration Approach in [14]
	Least Squares Monte Carlo

	Empirical Study
	Simulation Models
	Basis Functions
	Results for American Put Options: Real Data
	Results for American Put Options: Synthetic Data
	Results for American Asian Call Options

	Conclusions
	References

	Tile Coding Based on Hyperplane Tiles
	Introduction
	Generalization in Reinforcement Learning
	Tile Coding

	Extending Tile Coding with Hyperplane Tiles
	Experimental Design
	Experimental Results
	Conclusions
	References

	Use of Reinforcement Learning in Two Real Applications
	Introduction
	Optimization of EPO Dosages in Patients Undergoing Chronic Renal Failure
	Description of the Problem
	Data Collection
	Experimental Setup
	Results

	Optimization of a Marketing Campaign
	Description of the Problem
	Data Collection
	Experimental Setup
	Results

	Conclusions
	References

	Applications of Reinforcement Learning to Structured Prediction
	Introduction
	Structured Prediction
	Formalism
	Compatibility Based Models
	Incremental Models

	Structured Prediction with Markov Decision Processes
	SP Markov Decision Process
	Learning a SP Policy
	Representations

	Experiments
	Sequence Labeling
	Tree Transformation

	Conclusion
	References

	Policy Learning – A Unified Perspective with Applications in Robotics
	Introduction
	Policy Learning Approaches
	Bounds for Policy Updates
	Resulting Approaches for Policy Learning
	Sketch of the Resulting Algorithms

	Robot Application
	Learning Operational Space Control
	Motor Primitive Improvement by Reinforcement Learning

	Conclusion
	References

	Probabilistic Inference for Fast Learning in Control
	Introduction
	Related Work

	Fast Reinforcement Learning Framework
	Implementation
	Dynamics Model
	Policy Model
	Policy Iteration

	Experiments
	Cost Function
	Experimental Setup
	Evaluations

	Discussion
	Current Limitations

	Conclusions and Outlook
	References

	United We Stand: Population Based Methods for Solving Unknown POMDPs
	Introduction
	POMDPs and FSCs
	Policy Search Algorithm
	Searching with a Single Finite State Controller
	Searching with a Population of Finite State Controllers
	Population Simulated Annealing with Information Sharing

	An Empirical Study
	Experimental Setup and Results
	Discussion and Related Work
	References

	New Error Bounds for Approximations from Projected Linear Equations
	Introduction
	Main Results
	Key Arguments for Proofs
	Comparison of Error Bounds
	Estimating the Low Dimensional Matrices in the Bounds

	Applications
	Cost Function Approximation for MDP
	Large General Systems of Linear Equations

	Discussion
	References

	Markov Decision Processes with Arbitrary Reward Processes
	Introduction
	Problem Definition
	Regret

	Related Works
	Follow the Perturbed Leader
	Oblivious Opponent
	Algorithm
	Results

	Approximate Algorithms
	Observing Rewards Only on Trajectory
	Regret against Dynamic Policies
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

